Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Stat Appl Genet Mol Biol ; 23(1)2024 01 01.
Article in English | MEDLINE | ID: mdl-38235525

ABSTRACT

Population stratification (PS) is one major source of confounding in both single nucleotide polymorphism (SNP) and haplotype association studies. To address PS, principal component regression (PCR) and linear mixed model (LMM) are the current standards for SNP associations, which are also commonly borrowed for haplotype studies. However, the underfitting and overfitting problems introduced by PCR and LMM, respectively, have yet to be addressed. Furthermore, there have been only a few theoretical approaches proposed to address PS specifically for haplotypes. In this paper, we propose a new method under the Bayesian LASSO framework, QBLstrat, to account for PS in identifying rare and common haplotypes associated with a continuous trait of interest. QBLstrat utilizes a large number of principal components (PCs) with appropriate priors to sufficiently correct for PS, while shrinking the estimates of unassociated haplotypes and PCs. We compare the performance of QBLstrat with the Bayesian counterparts of PCR and LMM and a current method, haplo.stats. Extensive simulation studies and real data analyses show that QBLstrat is superior in controlling false positives while maintaining competitive power for identifying true positives under PS.


Subject(s)
Models, Genetic , Polymorphism, Single Nucleotide , Haplotypes , Bayes Theorem , Phenotype , Genome-Wide Association Study
2.
Nanoscale Horiz ; 9(2): 186-214, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38164973

ABSTRACT

Silica nanoparticles have emerged as promising candidates in the field of nanomedicine due to their remarkable versatility and customizable properties. However, concerns about their potential toxicity in healthy tissues and organs have hindered their widespread clinical translation. To address this challenge, significant attention has been directed toward a specific subset of silica nanoparticles, namely degradable silica nanoparticles, primarily because of their excellent biocompatibility and responsive biodegradability. In this review, we provide a comprehensive understanding of degradable silica nanoparticles, categorizing them into two distinct groups: inorganic species-doped and organic moiety-doped silica nanoparticles based on their framework components. Next, the recent progress of tumor microenvironment (TME)-responsive degradable silica nanoparticles for precision theranostic applications is summarized in detail. Finally, current bottlenecks and future opportunities of theranostic nanomedicines based on degradable silica nanoparticles in clinical applications are also outlined and discussed. The aim of this comprehensive review is to shed light on the potential of degradable silica nanoparticles in addressing current challenges in nanomedicine, offering insights into their design, applications in tumor diagnosis and treatment, and paving the way for future advancements in clinical theranostic nanomedicines.


Subject(s)
Nanoparticles , Silicon Dioxide , Silicon Dioxide/therapeutic use , Precision Medicine , Tumor Microenvironment , Nanoparticles/therapeutic use , Nanomedicine
3.
Faraday Discuss ; 250(0): 377-389, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-37965928

ABSTRACT

Poly(nickel-benzene-1,2,4,5-tetrakis(thiolate)) (Ni-btt), an organometallic coordination polymer (OMCP) characterized by the coordination between benzene-1,2,4,5-tetrakis(thiolate) (btt) and Ni2+ ions, has been recognized as a promising p-type thermoelectric material. In this study, we employed a constitutional isomer based on benzene-1,2,3,4-tetrakis(thiolate) (ibtt) to generate the corresponding isomeric polymer, poly(nickel-benzene-1,2,3,4-tetrakis(thiolate)) (Ni-ibtt). Comparative analysis of Ni-ibtt and Ni-btt reveals several common infrared (IR) and Raman features attributed to their similar square-planar nickel-sulfur (Ni-S) coordination. Nevertheless, these two polymer isomers exhibit substantially different backbone geometries. Ni-btt possesses a linear backbone, whereas Ni-ibtt exhibits a more undulating, zig-zag-like structure. Consequently, Ni-ibtt demonstrates slightly higher solubility and an increased bandgap in comparison to Ni-btt. The most noteworthy dissimilarity, however, manifests in their thermoelectric properties. While Ni-btt exhibits p-type behavior, Ni-ibtt demonstrates n-type carrier characteristics. This intriguing divergence prompted further investigation into the influence of OMCP backbone geometry on the electronic structure and, particularly, the thermoelectric properties of these materials.

4.
Int J Biol Macromol ; 254(Pt 3): 128112, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37972845

ABSTRACT

Bacterial hemoglobins play important roles inside the cell. Phylogenetically, they belong to three different families: the single domain hemoglobin, flavohemoglobin and truncated hemoglobin. Vitreoscilla hemoglobin (VHb) is the first characterized bacterial hemoglobin, and belongs to the single domain hemoglobin family. Heterologous expression of VHb promotes the growth of host cells under microaerobic conditions, and enhances the yield of products during fermentation. Although VHb has been widely applied in the biotechnology field, other bacterial hemoglobins have not demonstrated similar applications. In this study, we identified four bacterial hemoglobins from the microaerobic growing bacterium Sphaerotilus natans, including one flavohemoglobins (FHB) and three truncated hemoglobins (THB1, THB2 and THB3). Absorption spectrum studies validate the existent of the Soret peak and Q-band characteristic to heme and suggest heme groups in FHB and THB1 are hexa- or penta-coordinated, respectively. Our studies demonstrate that FHB and all three truncated hemoglobins have NADH oxidation and radical production activities, which is surprising since truncated hemoglobins do not have a reductase domain that could bind NADH. However, the M. tuberculosis HbN does not show these activities, indicating they are not universal among truncated hemoglobins. Docking studies suggest the nicotinamide ring of NADH may bind to the distal heme pocket of THB1, suggesting the direct electron transfer from NADH to heme might be possible. Our truncated hemoglobins also show peroxidase activities that in THB2 and THB3 could be inhibited by FdR, indicating possible interactions between FdR and truncate hemoglobins. Expression of FHB and THB1 in E. coli could promote cell growth. THB1 also enhances the production of limonene in an engineered E. coli strain, while VHb does not have this effect, which suggests that studies on truncated hemoglobins may lead to the discovery of new and more powerful tools that could have profound impact on biotechnology.


Subject(s)
Escherichia coli , Truncated Hemoglobins , Humans , Truncated Hemoglobins/genetics , Truncated Hemoglobins/metabolism , Escherichia coli/metabolism , Limonene , NAD/metabolism , Hemoglobins/genetics , Hemoglobins/metabolism , Bacterial Proteins/metabolism , Heme/metabolism
5.
Phys Rev E ; 108(4-1): 044402, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37978611

ABSTRACT

Cognition involves the global integration of distributed brain regions that are known to work cohesively as cognitive subsystems during brain functioning. Empirical evidence has suggested that spatiotemporal phase relationships between brain regions, measured as synchronization and metastability, may encode important task-relevant information. However, it remains largely unknown how phase relationships aggregate at the level of cognitive subsystems under different cognitive processing. Here, we probe this question by simulating task-relevant brain dynamics through regional stimulation of a whole-brain dynamical network model operating in the resting-state dynamical regime. The model is constructed with structurally embedded Stuart-Laudon oscillators and then fitted with human resting-state functional magnetic resonance imaging data. Based on this framework, we first demonstrate the plausibility of introducing the cognitive system partition into the modeling analysis framework by showing that the clustering of regions across functional networks is better circumscribed by the predefined partition. At the cognitive subsystem level, we focus on how task-relevant phase dynamics are organized in terms of synchronization and metastability. We found that patterns of cognitive synchronization are more task specific, whereas patterns of cognitive metastability are more consistent across different states, suggesting it may encode a more task-general property during cognitive processing, an inherent property conferred by brain organization. This consistent network architecture in cognitive metastability may be related to the distinct functional responses of realistic cognitive systems. We also provide empirical evidence to partially support our computational results. Our paper may provide insights for the mechanisms underlying task-relevant brain dynamics, and establish a model-based link between brain structure, dynamics, and cognition, a fundamental step for computationally aided brain interventions.


Subject(s)
Brain , Nerve Net , Humans , Nerve Net/physiology , Brain/diagnostic imaging , Brain/physiology , Cognition/physiology , Brain Mapping , Cluster Analysis
6.
Ann Hum Genet ; 87(6): 302-315, 2023 11.
Article in English | MEDLINE | ID: mdl-37771252

ABSTRACT

INTRODUCTION: Population stratification (PS) is a major source of confounding in population-based genetic association studies of quantitative traits. Principal component regression (PCR) and linear mixed model (LMM) are two commonly used approaches to account for PS in association studies. Previous studies have shown that LMM can be interpreted as including all principal components (PCs) as random-effect covariates. However, including all PCs in LMM may dilute the influence of relevant PCs in some scenarios, while including only a few preselected PCs in PCR may fail to fully capture the genetic diversity. MATERIALS AND METHODS: To address these shortcomings, we introduce Bayestrat-a method to detect associated variants with PS correction under the Bayesian LASSO framework. To adjust for PS, Bayestrat accommodates a large number of PCs and utilizes appropriate shrinkage priors to shrink the effects of nonassociated PCs. RESULTS: Simulation results show that Bayestrat consistently controls type I error rates and achieves higher power compared to its non-shrinkage counterparts, especially when the number of PCs included in the model is large. As a demonstration of the utility of Bayestrat, we apply it to the Multi-Ethnic Study of Atherosclerosis (MESA). Variants and genes associated with serum triglyceride or HDL cholesterol are identified in our analyses. DISCUSSION: The automatic and self-selection features of Bayestrat make it particularly suited in situations with complex underlying PS scenarios, where it is unknown a priori which PCs are potential confounders, yet the number that needs to be considered could be large in order to fully account for PS.


Subject(s)
Genome-Wide Association Study , Models, Genetic , Humans , Bayes Theorem , Genetic Association Studies , Computer Simulation , Linear Models , Phenotype
7.
RSC Adv ; 13(21): 14443-14460, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37180014

ABSTRACT

Cancer has emerged as a pressing global public health issue, and improving the effectiveness of cancer treatment remains one of the foremost challenges of modern medicine. The primary clinical methods of treating cancer, including surgery, chemotherapy and radiotherapy, inevitably result in some adverse effects on the body. However, the advent of photothermal therapy offers an alternative route for cancer treatment. Photothermal therapy relies on photothermal agents with photothermal conversion capability to eliminate tumors at high temperatures, which offers advantages of high precision and low toxicity. As nanomaterials increasingly play a pivotal role in tumor prevention and treatment, nanomaterial-based photothermal therapy has gained significant attention owing to its superior photothermal properties and tumor-killing abilities. In this review, we briefly summarize and introduce the applications of common organic photothermal conversion materials (e.g., cyanine-based nanomaterials, porphyrin-based nanomaterials, polymer-based nanomaterials, etc.) and inorganic photothermal conversion materials (e.g., noble metal nanomaterials, carbon-based nanomaterials, etc.) in tumor photothermal therapy in recent years. Finally, the problems of photothermal nanomaterials in antitumour therapy applications are discussed. It is believed that nanomaterial-based photothermal therapy will have good application prospects in tumor treatment in the future.

8.
Phys Chem Chem Phys ; 25(8): 6002-6008, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36786524

ABSTRACT

The surfactant drag reduction effect fades away in practical pipe flow mainly due to the weakly alkaline environment and existence of iron rust in solution. Based on our previous work, this phenomenon is further investigated in the present study. Our results show that both impacts of weak alkalinity and iron rust on micelle structure cause a decrease in the surfactant drag reduction ability. The impact of weak alkalinity on the micelle structure is much more direct and powerful compared with that of iron rust, and consequently, there is a big difference in the destroying degrees of the two impacts on the surfactant drag reduction ability. When the factors of weak alkalinity and iron rust coexist in solution, their impacts on the surfactant micelle structure and drag reduction are mutually independent due to their different impact mechanisms. Finally, the methods for eliminating the impact of weak alkalinity and iron rust on surfactant drag reduction performance are provided.

9.
Article in English | MEDLINE | ID: mdl-36652816

ABSTRACT

Kidney yang deficiency syndrome (KYDS) is a classic syndrome of traditional Chinese medicine (TCM). The salt-processed product of Semen Cuscuta (YP) is the monarch drug in Bushen Antai Mixture (BAM), can improve the reproductive dysfunction caused by KYDS, and the effect is better than that of raw products of Semen Cuscuta (SP). However, its mechanism is not completely clear yet. In this study, an integrated strategy combining untargeted metabolomics with microbiology was used to explore the mechanism of YP in the BAM improving KYDS. 16S rDNA gene sequencing showed that BAM containing YP (Y-BAM) had a significantly better regulatory effect on Desulfobacterota and Desulfovibrionaceae_unclassified than BAM containing SP (S-BAM). Untargeted metabolomics studies showed that Y-BAM significantly regulated 4 metabolites and 4 metabolic pathways. In addition, multi-index analysis showed that the effect of Y-BAM on arachidonic acid metabolism, tyrosine metabolism, purine metabolism, fructose and mannose metabolism and total metabolism was closer to that of the control group compared to S-BAM. The analysis of serum biochemical indexes showed that Y-BAM had more significant regulating effect on the levels of luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T) and superoxide dismutase (SOD) in serum of KYDS rats compared to S-BAM. Spearman correlation analysis showed that there was a significant correlation between intestinal microorganisms and metabolites and serum biochemical indexes. For example, Desulfovibrionaceae_unclassified was positively correlated with arachidonic acid, and negatively correlated with SOD and LH. This study suggests that YP may enhance the regulation of intestinal flora and endogenous metabolism of KYDS, so that BAM shows a better therapeutic effect on KYDS, which also reasonably explains why BAM uses Semen Cuscuta stir-baked with salt solution.


Subject(s)
Cuscuta , Yang Deficiency , Rats , Animals , Yang Deficiency/drug therapy , Research Design , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacology , Arachidonic Acid/therapeutic use , Seeds/metabolism , Metabolomics/methods , Kidney/metabolism , Sodium Chloride/pharmacology
10.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36678585

ABSTRACT

The Stephania tetrandra−Astragalus membranaceus herbal pair (FH) is a classic herbal pair widely used in the treatment of nephrotic syndrome (NS). The effects of Stephania tetrandra (FJ) and Astragalus membranaceus (HQ) on NS have been reported, but the mechanism of their combination on the improvement of NS are still unclear. The NS model was established by injecting adriamycin into the tail vein. FH intervention reduced the levels of serum triglyceride, total cholesterol, interleukin-6 (IL-6), blood urea nitrogen (BUN), urinary protein, and the gene expression levels of aquaporin 2 (AQP2) and arginine vasopressin (AVP) in NS rats. In addition, FH improved kidney injury in NS rats by inhibiting the expression of interleukin 13 (IL-13), phospho-signal transducers, and activators of transcription 6 (p-STAT6), Bax, cleaved-caspase3, while promoting the expression of Bcl-2. By comprehensive comparison of multiple indexes, the effects of FH on lipid metabolism, glomerular filtration rate, and inflammation were superior to that of FJ and HQ. Metabonomic studies showed that, compared with FJ and HQ, FH intervention significantly regulated tricarboxylic acid (TCA) cycle, cysteine and methionine metabolism, and alanine, aspartic acid and glutamic acid metabolism. Pearson correlation analysis showed that succinic acid and L-aspartic acid were negatively correlated with urinary protein, cystatin C (Cys C) and BUN (p < 0.05). In summary, FH could reduce renal injury and improve NS through inhibiting the IL-13/STAT6 signal pathway, regulating endogenous metabolic pathways, such as TCA cycle, and inhibiting the expression of AQP2 and AVP genes. This study provides a comprehensive strategy to reveal the mechanism of FH on the treatment of NS, and also provides a reasonable way to clarify the compatibility of traditional Chinese medicine.

11.
Langmuir ; 38(46): 14172-14184, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36367785

ABSTRACT

Research on the dispersion and stability of nanoparticles in liquid media is one of the key subjects for nanomaterial utilization. In consideration of the preponderance of coarse-grained (CG) molecular dynamics (MD) simulation in following and understanding the structure and dynamics on the nanoscale, an improved CG model for nanoparticles based on the Martini force field is established to facilitate the more extensive applications of this simulation method and further studies on complex nanoparticle liquid systems. Gel ink is selected as the liquid system for nanoparticles to validate the improved CG model on the one hand and introduce the CGMD simulation method into the studies of this system on the other. The calculation shows that the improved model can provide relatively precise results and has good computational stability. The effect mechanisms of the thickener and disperser on the carbon black nanoparticle are similar, namely the result of a delicate balance between the interaction of the thickener/disperser with the carbon black nanoparticle and the interaction of the thickener and disperser with each other. Furthermore, the phase assimilating effect of disperser molecules is key for separating the agglomerated carbon black nanoparticles; thereafter, the space steric hindrance effect and the electrostatic hindrance effect play main roles in maintaining the dispersion of carbon black nanoparticles.


Subject(s)
Molecular Dynamics Simulation , Nanoparticles , Humans , Soot , Ink , Nanoparticles/chemistry , Static Electricity
12.
Front Cell Infect Microbiol ; 12: 1026627, 2022.
Article in English | MEDLINE | ID: mdl-36389137

ABSTRACT

Gastrodia elata Blume was used to treat stroke and headaches caused by "Feng" for thousands of years. The present study has shown a significant effect of G. elata Blume in improving cerebral ischemia-reperfusion injury (CIRI). However, the mechanism of G. elata Blume in improving CIRI by regulating the intestinal flora has not been reported until now. This research aimed to comprehensively evaluate the mechanism of G. elata Blume in CIRI based on fecal metabolomics and 16S rDNA sequencing. The rat model with CIRI was created based on the Zea Longa method. Enzyme-linked immunosorbent assay (ELISA) was used to monitor the inflammatory factors in rat serum. Damages of brain tissues were observed using hematoxylin and eosin (H&E) staining. Cerebral infarction was observed by 2,3,5-triphenyltetrazolium chloride (TTC) staining. The balance of intestinal flora in cecal contents of rats was evaluated by high-throughput sequencing. Changes of metabolites in the intestinal flora were evaluated by fecal metabolomics through Ultra high performance liquid chromatography-orbitrap exploris-mass spectrometer (UHPLC-OE-MS). The area of brain necrosis, cerebral infarction volume, and the contents of inflammatory factors in CIRI rats can be effectively reduced after oral administration of G. elata Blume. CIRI can cause disturbances in the intestinal flora and its associated metabolites. G. elata Blume can significantly regulate the composition of the intestinal microflora. It reversed CIRI-induced changes in the levels of multiple intestinal bacteria, including Prevotellaceae, Coriobacteriaceae; Prevotella, Gamma proteobacteria unclassified, Barnesiella, Escherichia, Shigella; uncultured Shigella sp., Flavonifractor sp., Escherichia sp. enrichment culture clone NBAR004, Veillonella sp. R-32, and Lactobacillus intestinalis. The levels of metabolites in cecal contents were disturbed in rats with CIRI, including amino acid, purine, and sphingolipid metabolism. The changes in the level of biomarkers in amino acid metabolism induced by CIRI were significantly reversed after treatment with G. elata Blume. Correlation studies show that Prevotellaceae was significantly positively correlated with interleukin (IL)-6, and L. intestinalis and L-phenylalanine were negatively interrelated to IL-1ß. Beta-glycerophosphoric acid was significantly negatively interrelated to high-sensitivity C-reactive protein (hs-CRP). There were significantly negative correlations between L-phenylalanine and L. intestinalis, beta-glycerophosphoric acid and Prevotellaceae. G. elata Blume protected against CIRI, which may be related to improved intestinal microflora composition and metabolism, resulting in decreased inflammation.


Subject(s)
Gastrodia , Reperfusion Injury , Rats , Animals , Gastrodia/chemistry , DNA, Ribosomal/genetics , Plant Extracts/pharmacology , Plant Extracts/chemistry , Reperfusion Injury/metabolism , Cerebral Infarction , Amino Acids , Phenylalanine
13.
Materials (Basel) ; 15(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35454481

ABSTRACT

The orientation, distribution, and contact point density of BF (basalt fiber) in the concrete matrix play significant roles in the mechanical properties of BF concrete, but represent a weak point in current research. It is meaningful to study the morphological characteristics of BF in concrete. In this study, the transparent model test and joint blocking method were innovatively adopted to investigate the correlation of dosage with the BF morphological parameters and concrete mechanical properties. A focus on a BF dosage of 0-7.5 kg/m3 and the contribution index of fibers Cf was defined. Furthermore, NMR and CT techniques were used to observe the changes in the microstructure of BF concrete. The experimental results show that the BF contribution index Cf reaches the largest value when the BF content is around 3 kg/m3, approximately 2.7; in this case, the mechanical properties of BF concrete were also optimal, and the Cf was only 2.34 when the BF content was 7.5 kg/m3. NMR and CT test results show that there is a strong correlation between the BF morphological parameters and the distribution of pore structure in the concrete matrix. The overlapping contact of BF clusters led to the penetration of pores, which led the macro-pore proportion to increase dramatically. The increase in the macro-pore proportion is the main reason for the deterioration in concrete performance. In addition, these macro-pores may have adverse effects on the chloride ion permeability of BF concrete.

14.
Front Comput Neurosci ; 16: 791189, 2022.
Article in English | MEDLINE | ID: mdl-35185504

ABSTRACT

Theta rhythms (4-12 Hz) in the hippocampus are thought to be associated with cognitive functions such as memory processing and spatial navigation. Rhythmic oscillations in the neural system can be induced by synchronization of neural populations, while physiological mechanisms for the emergence, modulation, and regulation of such rhythms are not fully understood. Conceptual reduced models are promising in promoting current understandings toward neural synchronization because of high computational efficiency, while they appear less straightforward in biological relevance. In this study, we use a hybrid E-I network as a conceptual model of the hippocampus to investigate the dynamics of synchronous theta oscillations. Specifically, experimentally constrained Izhikevich neurons and preferential connections among neural groups specific to hippocampal CA1 are incorporated to enhance the biological relevance of the model network. Based on such a model, synaptic factors related to the balance of network excitation and inhibition are the main focus of present study. By careful parameter exploration, the distinct role of synaptic connections in theta rhythm generation, facilitation of synchronization, and induction of burst activities are clarified. It is revealed that theta rhythms can be present with AMPA mediated weak E-I couplings, or with strong NMDA current. Moreover, counter-inhibition, namely inhibition of inhibition, is found effective in modulating the degree of network synchronization, while has little effect on regulating network frequency in both regimes. Under pathological considerations where the effect of pyramidal sprouting is simulated, synchronized burst patterns are observed to be induced by elevated recurrent excitation among pyramidal cells. In the final part, we additionally perform a test on the robustness of our results under heterogeneous parameters. Our simulation results may provide insights into understanding how brain rhythms are generated and modulated, and the proposed model may serve as a useful template in probing mechanisms of hippocampal-related dynamics.

15.
ACS Nano ; 16(2): 2682-2689, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35107990

ABSTRACT

Circularly polarized light (CPL) has considerable technological potential, from quantum computing to bioimaging. To maximize the opportunity, high performance photodetectors that can directly distinguish left-handed and right-handed circularly polarized light are needed. Hybrid organic-inorganic perovskites containing chiral organic ligands are an emerging candidate for the active material in CPL photodetecting devices, but current studies suggest there to be a trade-off between the ability to differentially absorb CPL and photocurrent responsivity in chiral perovskites devices. Here, we report a CPL detector based on quasi two-dimensional (quasi-2D) chiral perovskite films. We find it is possible to generate materials where the circular dichroism (CD) is comparable in both 2D and quasi-2D films, while the responsivity of the photodetector improves for the latter. Given this, we are able to showcase a CPL photodetector that exhibits both a high dissymmetry factor of 0.15 and a high responsivity of 15.7 A W-1. We believe our data further advocates the potential of chiral perovskites in CPL-dependent photonic technologies.

16.
Huan Jing Ke Xue ; 43(2): 723-734, 2022 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-35075846

ABSTRACT

Halocarbons are hot topics in atmospheric environment and climate change research. Combining observational data from six field campaigns at the summit of Mount Taishan (36.25°N, 117.10°E, 1534 m above sea level) with backward trajectory and receptor source analyses, this study analyzed the long-term trends and major emission sources of halocarbons in the regional background atmosphere of the North China Plain (NCP) from 2003 to 2018. The results showed that the volume fraction of species eliminated by the Montreal Protocol (MP) showed a significant downward trend; however, the MP-controlled and unregulated species showed an overall upward trend. Meanwhile, the median volume fraction of the MP-controlled and unregulated species at Mount Taishan were significantly higher than the mid-latitude median background values in the northern hemisphere. Mount Taishan air was mainly affected by four types of air masses, of which the air mass originating from NCP accounted for the highest proportion (41%). The major sources of halocarbons were biomass/biofuel burning (38.1%), refrigeration (26.2%), industrial and domestic solvent use (21.7%), solvent use in the electronic industry (8.7%), and leakage of chlorofluorocarbon (CFCs) banks (5.3%). This study fully demonstrates that MP has been effectively implemented in China and provides evidence and recommendations to further reduce and control the volume fraction of halocarbons.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Atmosphere , Biomass , China , Environmental Monitoring , Seasons
17.
Front Microbiol ; 12: 672620, 2021.
Article in English | MEDLINE | ID: mdl-34413835

ABSTRACT

An extracellular laccase (GLL) was purified from fermentation broth of the litter-decomposing fungus Gymnopus luxurians by four chromatography steps, which resulted in a high specific activity of 118.82 U/mg, purification fold of 41.22, and recovery rate of 42.05%. It is a monomeric protein with a molecular weight of 64 kDa and N-terminal amino acid sequence of AIGPV TDLHI, suggesting that GLL is a typical fungal laccase. GLL demonstrated an optimum temperature range of 55°C-65°C and an optimum pH 2.2 toward 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). It displayed considerably high thermostability and pH stability with about 63% activity retained after 24 h at 50°C, and 86% activity retained after 24 h at pH 2.2, respectively. GLL was significantly enhanced in the presence of K+, Na+, and Mg2+ ions. It demonstrated K m of 539 µM and k cat /K m of 140 mM-1⋅s-1 toward ABTS at pH 2.2 and 37°C. Acetosyringone (AS) and syringaldehyde (SA) were the optimal mediators of GLL (0.4 U/ml) for dye decolorization with decolorization rates of about 60%-90% toward 11 of the 14 synthetic dyes. The optimum reaction conditions were determined to be mediator concentration of 0.1 mM, temperature range of 25°C -60°C, and pH 4.0. The purified laccase was the first laccase isolated from genus Gymnopus with high thermostability, pH stability, and effective decolorization toward dyes, suggesting that it has potentials for textile and environmental applications.

18.
Molecules ; 26(13)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34279368

ABSTRACT

The purpose of this study was to identify new metal-based anticancer drugs; to this end, we synthesized two new copper(II) complexes, namely [Cu(ncba)4(phen)] (1) and [Cu(ncba)4(bpy)] (2), comprised 4-chloro-3-nitrobenzoic acid as the main ligand. The single-crystal XRD approach was employed to determine the copper(II) complex structures. Binding between these complexes and calf thymus DNA (CT-DNA) and human serum albumin (HSA) was explored by electronic absorption, fluorescence spectroscopy, and viscometry. Both complexes intercalatively bound CT-DNA and statically and spontaneously quenched DNA/HSA fluorescence. A CCK-8 assay revealed that complex 1 and complex 2 had substantial antiproliferative influences against human cancer cell lines. Moreover, complex 1 had greater antitumor efficacy than the positive control cisplatin. Flow cytometry assessment of the cell cycle demonstrated that these complexes arrested the HepG2 cell cycle and caused the accumulation of G0/G1-phase cells. The mechanism of cell death was elucidated by flow cytometry-based apoptosis assays. Western blotting revealed that both copper(II) complexes induced apoptosis by regulating the expression of the Bcl-2(Bcl-2, B cell lymphoma 2) protein family.


Subject(s)
Antineoplastic Agents/chemical synthesis , Chlorobenzoates/chemistry , Coordination Complexes/chemical synthesis , Copper/chemistry , Serum Albumin, Human/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Coordination Complexes/pharmacology , DNA/chemistry , Hep G2 Cells , Humans
19.
RSC Adv ; 11(53): 33408-33415, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-35497550

ABSTRACT

Ferrocene is used as a catalytically active site and building block to construct a new conjugated microporous polymer (CMP), named Fc-POP. A corresponding carbon nanotube composite (CNTs@Fc-POP) with tubular structure was obtained through the π-π interaction between multi-walled carbon nanotubes (MWCNTs) and reactive molecules. This innovative modification method of carbon nanotubes provides a way to construct functionalized carbon materials. The two materials can achieve high conversion and selectivity of benzene hydroxylation to phenol under light irradiation using hydrogen peroxide (H2O2) as an oxidant. Due to the synergistic effect between the carbon nanotubes and the ferrocene group, the incorporation of MWCNTs can improve the yield of phenol significantly. This work explores a new photocatalystic system and expands the related photocatalytic application of CNTs.

20.
ACS Appl Mater Interfaces ; 11(51): 48352-48362, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31789014

ABSTRACT

Four new conjugated microporous polymers (CMPs) were synthesized by a Buchwald-Hartwig (BH) cross-coupling reaction of tri- and tetrafunctionalized precursors to yield materials with tunable surface area and pore size distribution. This approach yielded LPCMP1-4, CMPs with significantly higher Brunauer-Emmett-Teller (BET) surface areas (more than 5 times higher) than other related BH-based CMPs. These CMPs possess not only high BET specific surface areas and high chemical and thermal stabilities, but also exhibit outstanding swellability. To the best of our knowledge, swellable behavior was studied in great detail for CMPs for the first time, with the greatest degree of swelling for methanol reaching 16.5 and 16.3 mL g-1 for LPCMP1 and LPCMP3, respectively. Owing to their excellent swellability, we further studied the adsorption capacity of these CMPs for different toxic organic vapors (including toluene and methanol). LPCMP1 and LPCMP3 adsorbed 124 and 117 mg g-1 toluene, respectively, at saturated vapor pressure. For methanol, the adsorption capacities of LPCMP1 and LPCMP3 were up to 250 and 215 mg g-1, respectively, which are the highest recorded values when compared with published data for CMPs, HCPs, MOFs, and porous carbons. These materials are promising candidates for the removal and elimination of hazardous organic vapors and chemical warfare agents. Moreover, all the polymers show high sensitivity to nitroaromatic explosives. LPCMP2 and LPCMP4 exhibit high selectivity for TNT and may be suitable as new candidates to selectively detect TNT for security or environmental applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...