Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 138: 189-199, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38135387

ABSTRACT

Membrane distillation (MD) is a promising alternative desalination technology, but the hydrophobic membrane cannot intercept volatile organic compounds (VOCs), resulting in aggravation in the quality of permeate. In term of this, electro-Fenton (EF) was coupled with sweeping gas membrane distillation (SGMD) in a more efficient way to construct an advanced oxidation barrier at the gas-liquid interface, so that the VOCs could be trapped in this layer to guarantee the water quality of the distillate. During the so-called EF-MD process, an interfacial interception barrier containing hydroxyl radical formed on the hydrophobic membrane surface. It contributed to the high phenol rejection of 90.2% with the permeate phenol concentration lower than 1.50 mg/L. Effective interceptions can be achieved in a wide temperature range, even though the permeate flux of phenol was also intensified. The EF-MD system was robust to high salinity and could electrochemically regenerate ferrous ions, which endowed the long-term stability of the system. This novel EF-MD configuration proposed a valuable strategy to intercept VOCs in MD and will broaden the application of MD in hypersaline wastewater treatment.


Subject(s)
Volatile Organic Compounds , Water Purification , Distillation/methods , Membranes, Artificial , Water Purification/methods , Phenols
2.
Environ Sci Technol ; 57(47): 19023-19032, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37556354

ABSTRACT

The industrial effluent from glyphosate production has high salinity and refractory organic contaminants. The removal of organics and the recycling of inorganic salts from this kind of water are challenging issues. In this study, electro-Fenton (EF) and membrane distillation (MD) were coupled in a single reactor utilizing a membrane-based electrode (Mem-GDE) with the ability to bidirectionally transfer vapor and oxygen and electrochemically synthesize H2O2. The operating thermal conditions for MD significantly promoted Fenton reactions and, thus, the removal of glyphosate. During operation, Fe species deposited on the Mem-GDE and enhanced its catalytic activity and adsorptive capacity, which markedly increased the apparent reaction rate constant of glyphosate by 6 times. This novel EF-MD process simultaneously removed organics and concentrated the inorganics, which is very meaningful for decreasing the costs for subsequent crystallization and achieving high-quality crystal salts. This study provides an efficient method for the treatment of organic-inorganic hybrid wastewater.


Subject(s)
Distillation , Water Pollutants, Chemical , Hydrogen Peroxide/chemistry , Salts , Wastewater , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...