Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Nano Lett ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012034

ABSTRACT

The interaction between light and moiré superlattices presents a platform for exploring unique light-matter phenomena. Tailoring these optical properties holds immense potential for advancing the utilization of moiré superlattices in photonics, optoelectronics, and valleytronics. However, the control of the optical polarization state in moiré superlattices, particularly in the presence of moiré effects, remains elusive. Here, we unveil the emergence of optical anisotropy in moiré superlattices by constructing twisted WSe2/WSe2/SiP heterostructures. We report a linear polarization degree of ∼70% for moiré excitons, attributed to the spatially nonuniform charge distribution, corroborated by first-principles calculations. Furthermore, we demonstrate the modulation of this linear polarization state via the application of a magnetic field, resulting in polarization angle rotation and a magnetic-field-dependent linear polarization degree, influenced by valley coherence and moiré potential effects. Our findings demonstrate an efficient strategy for tuning the optical polarization state of moiré superlattices using heterointerface engineering.

2.
Nano Lett ; 24(26): 8189-8197, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38904278

ABSTRACT

IV-V two-dimensional materials have emerged as key contenders for polarization-sensitive and angle-resolved devices, given their inherent anisotropic physical properties. While these materials exhibit intriguing high-pressure quasi-particle behavior and phase transition, the evolution of quasi-particles and their interactions under external pressure remain elusive. Here, employing a diamond anvil cell and spectroscopic measurements coupled with first-principles calculations, we unveil rarely observed pressure-induced phonon-phonon coupling in layered SiP flakes. This coupling manifests as an anomalous phonon hardening behavior for the A1 mode within a broad wavenumber phonon softening region. Furthermore, we demonstrate the effective tuning of exciton emissions in SiP flakes under pressure, revealing a remarkable 63% enhancement in the degree of polarization (DOP) within the pressure range of 0-3.5 GPa. These findings contribute to our understanding of high-pressure phonon evolution in SiP materials and offer a strategic approach to manipulate the anisotropic performance of in-plane anisotropic 2D materials.

3.
Oncol Lett ; 27(6): 264, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38659420

ABSTRACT

Nucleotide binding and oligomeric domain-like receptor X1 (NLRX1), a member of the NLR family, is associated with the physiological and pathological processes of inflammation, autophagy, immunity, metabolism and mitochondrial regulation, and has been demonstrated to have pro- or antitumor effects in various tumor types. However, the biological function of NLRX1 in esophageal squamous cell carcinoma (ESCC) has remained elusive. In the present study, by using bioinformatics methods, the differential expression of NLRX1 at the mRNA level was examined. Overall survival, clinical correlation, receiver operating characteristic curve, Cox regression, co-expression, enrichment, immune infiltration and drug sensitivity analyses were carried out. A nomogram and a calibration curve were constructed. Changes in protein expression levels were investigated by immunohistochemistry and western blotting. The impact of NLRX1 on i) cell proliferation was evaluated by Cell Counting Kit-8 assays; ii) migration was examined by wound-healing assays; iii) migration and invasion were evaluated by Transwell assays; and iv) apoptosis was assessed by Annexin V/PI staining and flow cytometry. The results revealed that, compared to normal adjacent tissue, NLRX1 was lowly expressed in ESCC, and patients with low NLRX1 expression had a shorter survival time. NLRX1 was an independent prognostic factor for ESCC and was associated with tumor grading. Patients in the low-NLRX1 group showed a decrease in the infiltration of activated natural killer cells, monocytes and M0 macrophages, and these immune-cell infiltration levels were positively correlated with NLRX1 expression. Knocking down NLRX1 promoted the proliferation of KYSE450 cells, while overexpression of NLRX1 inhibited the proliferation of ECA109 cells. NLRX1 negatively regulated the PI3K/AKT signaling pathway in ESCC. These findings indicate that, through several mechanisms, NLRX1 suppresses tumor growth in ESCC, which offers new insight for investigating the causes and progression of ESCC, as well as for identifying more efficient therapeutic approaches.

4.
Front Oncol ; 14: 1322116, 2024.
Article in English | MEDLINE | ID: mdl-38450188

ABSTRACT

Background: Targeted therapies and immunotherapy are currently considered the mainstay first-line treatment for advanced BRAF-mutated melanoma. However, the impact of treatment (targeted therapy and immunotherapy) and the prognostic factors are still not clear. Material and methods: Medical records of 140 patients diagnosed with advanced melanoma between 2011 and 2021 were retrospectively reviewed to extract demographic, BRAF status, treatment, performance status, and survival data. ORR, PFS, and OS were compared between patients diagnosed with advanced melanoma and treated with first-line IT or BRAF/MEKi. The prognostic factors were assessed using Cox regression models. Results: In all patients and those treated with immunotherapy, we did not find any effect of BRAF status on ORR, PFS, or OS. In patients with BRAF-mutated melanoma, ORR was 43.8% vs. 70% (P=0.04), PFS was 19.2 vs. 11.5 months (p=0.22), and OS was 33.4 vs. 16.4 months for the immunotherapy and targeted therapy groups, respectively (P=0.04). ECOG, presence of brain metastases, and high LDH level from initiation of first-line treatment were all associated with differences in PFS and OS. Conclusion: Patients with advanced BRAF-mutated melanoma treated with first-line immunotherapy had a significantly longer PFS and OS than those treated with first-line BRAF/MEKi; however, first-line BRAF/MEKi treatment had a significantly higher ORR than first-line immunotherapy.

5.
Thorac Cancer ; 15(13): 1082-1094, 2024 May.
Article in English | MEDLINE | ID: mdl-38553795

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) play critical roles in the tumorigenesis and radiosensitivity of multiple cancers. Nevertheless, the biological functions of circRNA periostin (circ-POSTN) in esophageal cancer (EC) progression and radiosensitivity have not been well elucidated. METHODS: The expression of circ-POSTN, microRNA-876-5p (miR-876-5p), and proto-oncogene tyrosine-protein kinase (FYN) was analyzed by quantitative reverse transcription PCR (RT-qPCR). Cell proliferation was assessed by MTT, colony formation, and 5-ethynyl-2'-deoxyuridine (EDU) assays. All protein levels were detected by western blot assay. Cell apoptosis and invasion were assessed by flow cytometry analysis and transwell assay, respectively. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to validate the interaction between miR-876-5p and circ-POSTN or FYN. The role of circ-POSTN in vivo was explored by establishing mice xenograft model. RESULTS: Circ-POSTN was overexpressed in EC tissues and cells. Knockdown of circ-POSTN inhibited cell proliferation and invasion and elevated apoptosis and radiosensitivity in EC cells. MiR-876-5p was a direct target of circ-POSTN, and its knockdown reversed the role of sh-circ-POSTN in EC cells. FYN was a direct target of miR-876-5p, and FYN elevation weakened the effects of miR-876-5p overexpression on the progression and radiosensitivity of EC cells. Moreover, circ-POSTN acted as a miR-876-5p sponge to regulate FYN expression. Circ-POSTN interference also suppressed tumor growth and enhanced radiosensitivity in vivo. CONCLUSION: Circ-POSTN knockdown inhibited proliferation and invasion, but increased apoptosis and enhanced radiosensitivity in EC cells via modulating miR-876-5p/FYN axis, which might be a potential diagnostic and therapeutic target for EC.


Subject(s)
Cell Proliferation , Esophageal Neoplasms , MicroRNAs , RNA, Circular , Radiation Tolerance , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/radiotherapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Animals , Mice , Radiation Tolerance/genetics , Apoptosis , Disease Progression , Proto-Oncogene Mas , Male , Female , Gene Expression Regulation, Neoplastic , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Mice, Nude , Xenograft Model Antitumor Assays
6.
J Biochem Mol Toxicol ; 38(2): e23659, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38348706

ABSTRACT

Circ_0081069 plays a key role in tumor growth; however, its effect on radiosensitivity in esophageal squamous cell carcinoma (ESCC) remains unknown. The study is performed to reveal the association of circ_0081069 expression and radiosensitivity in ESCC and the underlying mechanism. Circ_0081069, miR-195-5p, and spindlin 1 (SPIN1) RNA expression were detected by quantitative real-time polymerase chain reaction. Protein expression was checked by Western blot analysis or immunohistochemistry assay. Cell viability, proliferation, cell apoptosis, migration, and invasion were investigated by cell counting kit-8, 5-Ethynyl-29-deoxyuridine, flow cytometry analysis, scratch test, and transwell assays, respectively. The sensitivity of ESCC cells to radiation was investigated by cell colony formation assay. The interactions among circ_0081069, miR-195-5p, and SPIN1 were identified by dual-luciferase reporter assay and RNA Immunoprecipitation assay. Xenograft mouse model assay was performed to determine the effect of circ_0007841 on radiosensitivity in vivo. Circ_0081069 and SPIN1 expression were upregulated, whereas miR-195-5p was downregulated in ESCC tissues, ESCC cells, and radiation-stimulated ESCC cells. Circ_0081069 silencing inhibited ESCC cell proliferation, invasion, and migration but improved cell apoptosis. In addition, circ_0081069 knockdown enhanced ESCC cell radiosensitivity in vitro and in vivo. Circ_0081069 bound to miR-195-5p and regulated radiosensitivity by binding to miR-195-5p in ESCC cells. Moreover, SPIN1, a target of miR-195-5p, rescued miR-195-5p-mediated effects in ESCC cells. Circ_0081069 was secreted from ESCC cells by being packaged into exosomes. Further, circ_0081069-Exo inhibited radiosensitivity in ESCC cells. Exosome-mediated transfer of circ_0081069 induced SPIN1 production by binding to miR-195-5p, further inhibiting radiosensitivity in ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Exosomes , MicroRNAs , Humans , Animals , Mice , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/radiotherapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/radiotherapy , Biological Transport , Disease Models, Animal , MicroRNAs/genetics , Cell Proliferation , Cell Line, Tumor
7.
Medicine (Baltimore) ; 102(50): e36373, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38115303

ABSTRACT

BACKGROUND: This study aimed to investigate the impact of ovary-sparing intensity-modulated radiotherapy (IMRT) on plan quality, treatment time, and gamma passing rates for stage I/II cervical cancer patients. METHODS: Fifteen stage I/II cervical cancer patients were retrospectively enrolled, and a pair of clinically suitable IMRT plans were designed for each patient, with (Group A) and without (Group B) ovary-sparing. Plan factors affecting plan quality, treatment time, and gamma passing rates, including the number of segments, monitor units, percentage of small-area segments (field area < 20 cm2), and percentage of small-MU segments (MU < 10), were compared and statistically analyzed. Key plan quality indicators, including ovarian dose, target dose coverage (D98%, D95%, D50%, D2%), conformity index, and homogeneity index, were evaluated and statistically assessed. Treatment time and gamma passing rates collected by IBA MatriXX were also compared. RESULTS: The median ovarian dose in Group A and Group B was 7.61 Gy (range 6.71-8.51 Gy) and 38.52 Gy (range 29.84-43.82 Gy), respectively. Except for monitor units, all other plan factors were significantly lower in Group A than in Group B (all P < .05). Correlation coefficients between plan factors, treatment time, and gamma passing rates that were statistically different were all negative. Both Groups of plans met the prescription requirement (D95% ≥ 45.00 Gy) for clinical treatment. D98% was smaller for Group A than for Group B (P < .05); D50% and D2% were larger for Group A than for Group B (P < .05, P < .05). Group A plans had worse conformity index and homogeneity index than Group B plans (P < .05, P < .05). Treatment time did not differ significantly (P > .05). Gamma passing rates in Group A were higher than in Group B with the criteria of 2%/3 mm (P < .05) and 3%/2 mm (P < .05). CONCLUSION: Despite the slightly decreased quality of the treatment plans, the ovary-sparing IMRT plans exhibited several advantages including lower ovarian dose and plan complexity, improved gamma passing rates, and a negligible impact on treatment time.


Subject(s)
Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Female , Humans , Organs at Risk , Uterine Cervical Neoplasms/radiotherapy , Retrospective Studies , Ovary , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
8.
Front Pharmacol ; 14: 1234973, 2023.
Article in English | MEDLINE | ID: mdl-37954854

ABSTRACT

PARP was an enzyme found in the nucleus of eukaryotic cells that played a crucial role in repairing damaged DNA. Recently, PARP inhibitors have demonstrated great potential in cancer treatment. Thus, the FDA has approved several small-molecule PARP inhibitors for cancer maintenance therapy. The combination of PARP inhibitors and radiotherapy relies on synthetic lethality, taking advantage of the flaws in DNA repair pathways to target cancer cells specifically. Studies conducted prior to clinical trials have suggested that the combination of PARP inhibitors and radiotherapy can enhance the sensitivity of cancer cells to radiation, intensify DNA damage, and trigger cell death. Combining radiotherapy with PARP inhibitors in clinical trials has enhanced the response rate and progression-free survival of diverse cancer patients. The theoretical foundation of PARP inhibitors combined with radiotherapy is explained in detail in this article, and the latest advances in preclinical and clinical research on these inhibitors for tumor radiotherapy are summarized. The problems in the current field are recognized in our research and potential therapeutic applications for tumors are suggested. Nevertheless, certain obstacles need to be tackled when implementing PARP inhibitors and radiotherapies in clinical settings. Factors to consider when using the combination therapy are the most suitable schedule and amount of medication, identifying advantageous candidates, and the probable adverse effects linked with the combination. The combination of radiotherapy and PARP inhibitors can greatly enhance the effectiveness of cancer treatment.

9.
Opt Lett ; 48(22): 5867-5870, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966739

ABSTRACT

Two-dimensional (2D) semiconductors featuring low-symmetry crystal structures hold an immense potential for the design of advanced optoelectronic devices, leveraging their inherent anisotropic attributes. While the synthesis techniques for transition metal dichalcogenides (TMDs) have matured, a promising avenue emerges: the induction of anisotropy within symmetric TMDs through interlayer van der Waals coupling engineering. Here, we unveil the creation of heterostructures (HSs) by stacking highly symmetric MoSe2 with low-symmetry ReS2, introducing artificial anisotropy into monolayer MoSe2. Through a meticulous analysis of angle-dependent photoluminescence (PL) spectra, we discern a remarkable anisotropic intensity ratio of approximately 1.34. Bolstering this observation, the angle-resolved Raman spectra provide unequivocal validation of the anisotropic optical properties inherent to MoSe2. This intriguing behavior can be attributed to the in-plane polarization of MoSe2, incited by the deliberate disruption of lattice symmetry within the monolayer MoSe2 structure. Collectively, our findings furnish a conceptual blueprint for engineering both isotropic and anisotropic HSs, thereby unlocking an expansive spectrum of applications in the realm of high-performance optoelectronic devices.

10.
ACS Appl Mater Interfaces ; 15(41): 48475-48484, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37796741

ABSTRACT

Moiré superlattices have emerged as a promising platform for investigating and designing optically generated excitonic properties. The electronic band structure of these systems can be qualitatively modulated by interactions between the top and bottom layers, leading to the emergence of new quantum phenomena. However, the inhomogeneities present in atomically thin bilayer moiré superlattices created by artificial stacking have hindered a deeper understanding of strongly correlated electron properties. In this work, we report the fabrication of homogeneous moiré superlattices with controllable twist angles using a 2L-WSe2/2L-WSe2 homostructure. By adding extra layers, we provide additional degrees of freedom to tune the optical properties of the moiré superlattices while mitigating the nonuniformity problem. The presence of an additional bottom layer acts as a buffer, reducing the inhomogeneity of the moiré superlattice, while the encapsulation effect of the additional top and bottom WSe2 monolayers further enhances the localized moiré excitons. Our observations of alternating circularly polarized photoluminescence confirm the existence of moiré excitons, and their characteristics were further confirmed by theoretical calculations. These findings provide a fundamental basis for studying moiré potential correlated quantum phenomena and pave the way for their application in quantum optical devices.

11.
Radiat Res ; 200(3): 289-295, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37797165

ABSTRACT

To investigate the effect of Temozolomide combined with intensity modulated radiation therapy on serum factor, immune function and clinical efficacy in postoperative glioma patients. One hundred twenty-four patients with high-grade glioma admitted to the First Affiliated Hospital of Zhengzhou University were selected and randomly divided into the study group and the control group, with 62 cases in each group. The control group was given intensity modulated radiation therapy alone, and the study group was given Temozolomide combined with intensity modulated radiation therapy. The clinical efficacy, serum factor, immune function and adverse reactions were observed and compared. The overall response rate of the study group was 95.16%, which is higher than 83.87% in the control group, and the differences were significant (P < 0.05); After the treatment, the serum VEGF, EGF and HGF indicators and diverse immune function indicators were superior to those in the control group, and the differences indicated significance (P < 0.05); the incidence of adverse reactions in the study group was 37.10%, which is higher than 25.81% in the control group, but the differences showed no significance (P > 0.05). Temozolomide combined with intensity modulated radiation therapy could improve the level of serum factor in postoperative glioma patients, strengthen the immune function of the patients, and effectively facilitate the clinical comprehensive efficacy without increasing adverse reactions.


Subject(s)
Brain Neoplasms , Glioma , Humans , Temozolomide/therapeutic use , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Glioma/drug therapy , Glioma/radiotherapy , Treatment Outcome , Immunity
12.
Medicine (Baltimore) ; 102(34): e34677, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37653730

ABSTRACT

BACKGROUND: Absent in melanoma 1-like (AIM1L), also known as crystalline beta gamma domain containing 2. The relationship between AIM1L and tumors has not been fully investigated, and the biological function of AIM1L in different tumors is unknown, so we bioinformatically explored a possible relationship between AIM1L and esophageal squamous cell carcinoma (ESCC). METHODS: AIM1L mRNA expression was detected by the Gene Expression Omnibus database (GSE20347, GSE161533, and GSE53625), and protein level expression was detected by immunohistochemistry. The correlation between AIM1L expression and clinical pathological characteristics was evaluated by the Wilcoxon signed rank test or chi-square test. Kaplan-Meier analysis and Cox proportional risk regression model were used to determine the prognostic value of AIM1L in ESCC patients and establish and verify a nomogram. Find genes highly related to the expression of AIM1L, conduct GO and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, and conduct GSEA analysis on the gene set. The "CIBERSORT" R package was used to explore the relationship between AIM1L and immune infiltration, and the "OncoPredict" R package was used to explore the relationship between AIM1L and drug sensitivity. RESULTS: Compared with the matched adjacent non-cancer tissues, the expression of AIM1L was down-regulated in ESCC tissues, and correlated with tumor grade. Kaplan-Meier survival analysis and Cox analysis showed that the low expression of AIM1L was related to the poor prognosis of ESCC patients. Enrichment analysis explained the possible function of AIM1L, GSEA determined the highly correlated signal pathway of AIM1L low expression phenotype, immune infiltration analysis determined that AIM1L was related to activated NK cells and macrophage M2, and drug sensitivity analysis determined that the low expression of AIM1L might be related to EGFR targeted drug resistance. CONCLUSION: AIM1L may be a candidate tumor suppressor gene for ESCC and an independent molecular biomarker for the prognosis of ESCC patients.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Prognosis , Esophageal Neoplasms/genetics , Nomograms , Databases, Factual
13.
Medicine (Baltimore) ; 102(36): e34933, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37682167

ABSTRACT

With the advancement of radiotherapy equipment, stereotactic radiotherapy (SRT) has been increasingly used. Among the many radiotherapy devices, Halcyon shows promising applications. This article reviews the dosimetric performance such as plan quality, plan complexity, and gamma passing rates of SRT plans with Halcyon to determine the effectiveness and safety of Halcyon SRT plans. This article retrieved the last 5 years of PubMed studies on the effectiveness and safety of the Halcyon SRT plans. Two authors independently reviewed the titles and abstracts to decide whether to include the studies. A search was conducted to identify publications relevant to evaluating the dosimetric performance of SRT plans on Halcyon using the key strings Halcyon, stereotactic radiosurgery, SRT, stereotactic body radiotherapy, and stereotactic ablative radiotherapy. A total of 18 eligible publications were retrieved. Compared to SRT plans on the TrueBeam, the Halcyon has advantages in terms of plan quality, plan complexity, and gamma passing rates. The high treatment speed of SRT plans on the Halcyon is impressive, while the results of its plan evaluation are also encouraging. As a result, Halcyon offers a new option for busy radiotherapy units while significantly improving patient comfort in treatment. For more accurate results, additional relevant publications will need to be followed up in subsequent studies.


Subject(s)
Radiosurgery , Humans , Radiometry , Gamma Rays , Patient Comfort , PubMed
14.
Nano Lett ; 23(19): 8833-8841, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37726204

ABSTRACT

Moiré superlattices induced by twisted van der Waals (vdW) heterostructures or homostructures have recently gained significant attention due to their potential to generate exotic strong-correlation electronic and phonon phenomena. However, the lack of dynamic tuning for interlayer coupling of moiré superlattices hinders a thorough understanding and development of the moiré correlation state. Here, we present a dynamic tuning method for twisted WSe2/WSe2 homobilayers using a diamond anvil cell (DAC). We demonstrate the powerful tuning of interlayer coupling and observe an enhanced response to pressure for interlayer breathing modes and the rapid descent of indirect excitons in twisted WSe2/WSe2 homobilayers. Our findings indicate that the introduction of a moiré superlattice for WSe2 bilayers gives rise to hybridized excitons, which lead to the different pressure-evolution exciton behaviors compared to natural WSe2 bilayers. Our results provide a novel understanding of moiré physics and offer an effective method to tune interlayer coupling of moiré superlattices.

15.
J Bioenerg Biomembr ; 55(5): 381-396, 2023 10.
Article in English | MEDLINE | ID: mdl-37743442

ABSTRACT

Noncoding RNAs are key regulators in the Warburg Effect, an emerging hallmark of cancer. We intended to investigate the role and mechanism of circular RNA hsa_circ_0052611 (circ_0052611) and microRNA (miR)-767-5p in breast cancer (BRCA) hallmarks, especially the Warburg Effect. Expression of circ_0052611 and SCAI was downregulated, and miR-767-5p was upregulated in human BRCA tissues and cells; moreover, circ_0052611 acted as a miR-767-5p sponge to modulate the expression of miR-767-5p-targeted SCAI. Functionally, re-expressing circ_0052611 suppressed migration, invasion, glucose uptake, lactate production, and extracellular acidification rate (ECAR) in BRCA cells, and promoted apoptotic rate. These effects were accompanied by decreased Vimentin, N-cadherin, Bcl-2, and LDHA, and increased E-cadherin and Bax. Consistently, exhausting miR-767-5p exerted similar effects in BRCA cells. High miR-767-5p could counteract the role of circ_0052611 overexpression, and low SCAI likewise blocked the role of miR-767-5p deletion. In vivo, upregulating circ_0052611 delayed tumor growth of BRCA cells by altering miR-767-5p and SCAI expression. circ_0052611/miR-767-5p/SCAI axis might boycott the malignancy of BRCA cells.


Subject(s)
Cadherins , MicroRNAs , Humans , Biological Transport , Cell Line, Tumor , Cell Proliferation , Lactic Acid , MicroRNAs/genetics , RNA, Circular/genetics
16.
Nanoscale ; 15(29): 12388-12397, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37455620

ABSTRACT

The investigation of in-plane two-dimensional (2D) anisotropic materials has garnered significant attention due to their exceptional electronic, optical, and mechanical characteristics. The anisotropic optical properties and angle-dependent photodetectors based on 2D anisotropic materials have been extensively studied. However, novel in-plane anisotropic materials still need to be explored to satisfy for distinct environments and devices. Here, we report the remarkable anisotropic behavior of excitons and demonstrate a unique linear-dichroism transition of absorption between ultraviolet and visible light in layered silicon phosphide (SiP) through the analysis of polarization photoluminescence (PL) and absorbance spectra. Its high absorption linear dichroism ratio of 1.16 at 388 nm, 1.15 at 532 nm, and 1.19 at 733 nm is revealed, suggesting the brilliant non-isotropic responses. The robust periodic variation of the A1 and A2 Raman modes in 2D SiP materials allows for the determination of their crystal orientation. Furthermore, the presence of indirect excitons with phonon sidebands in the temperature-dependent PL spectra exhibits non-monotonic energy shifts with increasing temperature, which is attributed to an enhanced electron-phonon interaction and thermal expansion. Our findings provide valuable insights into the fundamental physical properties of layered SiP and offer guidelines for designing polarization-sensitive photodetectors and angle-dependent devices based on 2D anisotropic materials.

17.
Opt Lett ; 48(9): 2393-2396, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37126281

ABSTRACT

Monolayer transition metal dichalcogenides (TMDs) have a crystalline structure with broken spatial inversion symmetry, making them promising candidates for valleytronic applications. However, the degree of valley polarization is usually not high due to the presence of intervalley scattering. Here, we use the nanoindentation technique to fabricate strained structures of WSe2 on Au arrays, thus demonstrating the generation and detection of strained localized excitons in monolayer WSe2. Enhanced emission of strain-localized excitons was observed as two sharp photoluminescence (PL) peaks measured using low-temperature PL spectroscopy. We attribute these emerging sharp peaks to excitons trapped in potential wells formed by local strains. Furthermore, the valley polarization of monolayer WSe2 is modulated by a magnetic field, and the valley polarization of strained localized excitons is increased, with a high value of up to approximately 79.6%. Our results show that tunable valley polarization and localized excitons can be realized in WSe2 monolayers, which may be useful for valleytronic applications.

18.
Light Sci Appl ; 12(1): 117, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37173297

ABSTRACT

The stacking of twisted two-dimensional (2D) layered materials has led to the creation of moiré superlattices, which have become a new platform for the study of quantum optics. The strong coupling of moiré superlattices can result in flat minibands that boost electronic interactions and generate interesting strongly correlated states, including unconventional superconductivity, Mott insulating states, and moiré excitons. However, the impact of adjusting and localizing moiré excitons in Van der Waals heterostructures has yet to be explored experimentally. Here, we present experimental evidence of the localization-enhanced moiré excitons in the twisted WSe2/WS2/WSe2 heterotrilayer with type-II band alignments. At low temperatures, we observed multiple excitons splitting in the twisted WSe2/WS2/WSe2 heterotrilayer, which is manifested as multiple sharp emission lines, in stark contrast to the moiré excitonic behavior of the twisted WSe2/WS2 heterobilayer (which has a linewidth 4 times wider). This is due to the enhancement of the two moiré potentials in the twisted heterotrilayer, enabling highly localized moiré excitons at the interface. The confinement effect of moiré potential on moiré excitons is further demonstrated by changes in temperature, laser power, and valley polarization. Our findings offer a new approach for localizing moiré excitons in twist-angle heterostructures, which has the potential for the development of coherent quantum light emitters.

19.
J Biochem Mol Toxicol ; 37(8): e23383, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37158446

ABSTRACT

Circular RNA (circRNA) regulates malignant tumors, including ovarian cancer (OC). The present research study aimed to reveal the biological mechanism of circRNA mitofusin 2 (circMFN2) in OC. Cell biological behaviors were investigated using clonogenicity assay, EdU assay, transwell assay, and flow cytometry analysis. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analysis were implemented to detect the levels of circMFN2, miR-198, Cullin 4B (CUL4B), and apoptosis-related proteins. Glycolysis was assessed by glucose assay kit, lactate assay kit, and ATP level detection kit. The relationships among miR-198, circMFN2, and CUL4B were verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. The xenograft mice model was used to analyze tumor growth in vivo. The expression of circMFN2 and CUL4B was increased, while miR-330-5p was decreased in OC tissues or cells. The absence of CircMFN2 hindered cell proliferation, migration, invasion, and glycolysis and promoted apoptosis in OC cells. We found that circMFN2 promoted CUL4B expression via sponging miR-198. MiR-198 depletion reversed circMFN2 knockdown-induced effects in OC cells. Furthermore, CUL4B overexpression overturned the inhibitory effect of miR-198 in OC cells. And the absence of circMFN2 inhibited tumor growth in vivo. CircMFN2 repressed OC progression by regulating the miR-198/CUL4B axis.


Subject(s)
MicroRNAs , Ovarian Neoplasms , Humans , Animals , Mice , Female , RNA, Circular/genetics , Ovarian Neoplasms/genetics , Glycolysis , Cell Proliferation , Disease Models, Animal , Lactic Acid , MicroRNAs/genetics , Cell Line, Tumor , Cullin Proteins/genetics
20.
Small ; 19(26): e2207988, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36938893

ABSTRACT

The exploration of moiré superlatticesholds promising potential to uncover novel quantum phenomena emerging from the interplay of atomic structure and electronic correlation . However, the impact of the moiré potential modulation on the number of twisted layers has yet to be experimentally explored. Here, this work synthesizes a twisted WSe2 homotrilayer using a dry-transfer method and investigates the enhancement of the moiré potential with increasing number of twisted layers. The results of the study reveal the presence of multiple exciton resonances with positive or negative circularly polarized emission in the WSe2 homostructure with small twist angles, which are attributed to the excitonic ground and excited states confined to the moiré potential. The distinct g-factor observed in the magneto-optical spectroscopy is also shown to be a result of the confinement of the exciton in the moiré potential. The moiré potential depths of the twisted bilayer and trilayer homostructures are found to be 111 and 212 meV, respectively, an increase of 91% from the bilayer structure. These findings demonstrate that the depth of the moiré potential can be manipulated by adjusting the number of stacked layers, providing a promising avenue for exploration into highly correlated quantum phenomena.

SELECTION OF CITATIONS
SEARCH DETAIL
...