Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Inflammation ; 44(5): 1771-1781, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33847873

ABSTRACT

Cardiac dysfunction in severe sepsis is associated with increased mortality. However, the molecular mechanisms underlying septic heart dysfunction remain unclear. Expression of peroxisome proliferator-activated receptor-γ coactivator 1α (Pgc-1α), concentrations of inflammatory factors, and activation of the nuclear factor kappa-B (NF-κB) signaling pathway were examined in H9c2 cells after a 24-h lipopolysaccharide (LPS) stimulation period using qPCR, enzyme-linked immunosorbent assays (ELISAs), and western blots (WBs), respectively. Pgc-1α was overexpressed and suppressed in cells using a lentivirus vector and siRNA, respectively. The effects of Pgc-1α dysfunction on the release of inflammatory factors and apoptosis were analyzed. Pgc-1α expression was increased after LPS induction for 0.5 h and returned to the pre-induction level at 2 h. Levels of IL-1ß, IL-6, and TNF-α increase after LPS induction for 0.5 h and accumulated in the culture supernatants over time. The WBs revealed the highest Pgc-1α and phospho (p)-p65 protein levels after LPS induction for 0.5 h, followed by a decrease; moreover, the cleaved-caspase-3 level increased after LPS induction for 0.5 h and increased gradually thereafter. A functional analysis of Pgc-1α revealed that overexpression of this protein enhanced LPS-induced inflammatory factors and p-p65 levels and inhibited apoptosis during the early stage after LPS induction (0.5 and 4 h). In contrast, the inhibition of Pgc-1α expression inhibited the LPS expression-associated increases in inflammatory factors and p-p65 and promoted apoptosis. Pgc-1α promoted LPS-induced p65 phosphorylation and inflammatory factor release while inhibiting apoptosis.


Subject(s)
Apoptosis/drug effects , Inflammation Mediators/metabolism , Lipopolysaccharides/toxicity , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/biosynthesis , Animals , Apoptosis/physiology , Cell Line , Phosphorylation/drug effects , Phosphorylation/physiology , Rats
2.
Am J Transl Res ; 12(3): 901-911, 2020.
Article in English | MEDLINE | ID: mdl-32269722

ABSTRACT

The present study aimed to investigate the expression of inflammatory markers and mitochondrial function-related genes, as well as their temporal relationship with cardiac myocyte injury in a rat model of sepsis. The sepsis model was constructed using cecal ligation and puncture (CLP). Two hours after CLP, the levels of inflammatory cytokines (interleukin [IL]-1ß, IL-6, and TNFα) and myocardial function markers (serum brain natriuretic peptide [BNP], cardiac troponin-I [cTNI], and procalcitonin [PCT]) were increased significantly, falling from around 9 hours postoperatively. The concentration of nitric oxide (NO) in the heart tissue was increased 6 hours after CLP. The heart rate (HR) of rats that underwent CLP decreased 2 hours after surgery and then increased to above-normal values. The left ventricular short axis shortening (FS) and left ventricular ejection fraction (LVEF) were decreased at 2 hours postoperatively and reached a minima at 6 hours. Stroke volume (SV), cardiac output (CO), and changes and heart index (CI) results indicated myocardial dysfunction. Western blot analysis demonstrated the increased expression of mitochondrial function-related proteins and activation of mitochondrial apoptotic pathways. Hematoxylin and eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays revealed that the proportion of proapoptotic cells was significantly higher in rats that underwent CLP than sham surgery at 2 to 24 hours postoperatively. Taken together, our results indicate that-in the rat model-CLP-induced sepsis leads to impaired cardiac function. Furthermore, induction of the expression of mitochondrial function-related genes indicated that myocardial cell mitochondrial function was disrupted, further aggravating cardiomyocyte apoptosis. These results provide a theoretical basis for the treatment of sepsis-induced myocardial dysfunction.

3.
Huan Jing Ke Xue ; 39(5): 2306-2315, 2018 May 08.
Article in Chinese | MEDLINE | ID: mdl-29965532

ABSTRACT

Spatial heterogeneity of N2O generation and emissions in multi-ecotype lakes limited the accurate estimation of the N2O fluxes in lakes, but few studies on the characteristics of N2O generation and emissions have been conducted. In this study, N2O flux at the water-gas interface, dissolved N2O concentration in the water column, and N2O flux at the sediment-water interface in typical grass-type and algal-type zones of Taihu Lake were analyzed during summer, and indoor micro-environment experiments were conducted to illustrate the main factors affecting the generation and emissions of N2O. The results showed that the N2O fluxes at the water-gas interface, dissolved N2O concentration, and N2O fluxes at the sediment-water interface of the emergent macrophyte type area was higher than the algae-type area and submerged macrophyte area during the summer., with N2O fluxes at the water-gas interface of (115.807±7.583), (79.768±1.842), and (3.685±0.295) µmol ·(m2 ·h)-1, respectively. The dissolved N2O concentration in the water column were (0.051±0), (0.029±0.001), and (0.018±0) µmol ·L-1, respectively; and the N2O fluxes at the sediment-water interface were (178.275±3.666), (160.685±0.642), and (75.665±1.016) µmol ·(m2 ·h)-1, respectively. The spatial difference could be attributed to dominant plants and the concentration of inorganic nitrogen in the water column. The results of micro-environment experiments showed that nitrate and organic carbon sources could significantly increase the N2O production potential of sediments, the high concentration of NH4+-N in the water column might inhibit the N2O production in sediments, and the production rates of N2O in the sediment increased remarkably when the incubation temperature increased, suggesting that the generation and emissions of N2O were mainly restricted by nitrate, organic carbon, and temperature in summer.


Subject(s)
Chlorophyta , Lakes , Nitrous Oxide/analysis , Poaceae , Seasons , Carbon , China , Geologic Sediments , Nitrogen
4.
Mol Med Rep ; 13(3): 2745-50, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26847592

ABSTRACT

The histone deacetylase (HDAC) family is comprised of enzymes, which are involved in modulating the majority of critical cellular processes, including transcriptional regulation, apoptosis, proliferation and cell cycle progression. However, the biological function of HDAC5 in Wilms' tumor remains to be fully elucidated. The present study aimed to investigate the expression and function of HDAC5 in Wilm's tumor. It was demonstrated that the mRNA and protein levels of HDAC5 were upregulated in human Wilms' tumor tissues. Overexpression of HDAC5 in G401 cells was observed to significantly promote cellular proliferation, as demonstrated by the results of an MTT assay and bromodeoxyuridine incorporation assay. By contrast, HDAC5 knockdown using small interfering RNA suppressed the proliferation of the G401 cells. At the molecular level, the present study demonstrated that HDAC5 promoted the expression of c­Met, which has been previously identified as an oncogene. In addition, downregulation of c­Met inhibited the proliferative effects of HDAC5 in human Wilms' tumor cells. Taken together, these results suggested that HDAC5 promotes cellular proliferation through the upregulation of c­Met, and may provide a novel therapeutic target for the treatment of patients with Wilms' tumor.


Subject(s)
Cell Proliferation , Histone Deacetylases/metabolism , Kidney Neoplasms/enzymology , Receptor Protein-Tyrosine Kinases/genetics , Wilms Tumor/enzymology , Cell Line, Tumor , Child, Preschool , Female , Gene Expression , Histone Deacetylases/genetics , Humans , Infant , Kidney Neoplasms/pathology , Male , Receptor Protein-Tyrosine Kinases/metabolism , Up-Regulation , Wilms Tumor/pathology
5.
Zhong Yao Cai ; 39(6): 1308-10, 2016 Jun.
Article in English | MEDLINE | ID: mdl-30156804

ABSTRACT

Objective: To investigate the chemical constituents from Xanthium mongolicum. Methods: The constituents were isolated and purified by silicagel,Sephadex LH-20 column chromatography. Their structures were identified on the basis of spectral data and physiochemical characteristics. Results: Ten compounds were isolated and identified as hexadecanoic acid( 1), methyl 3, 4-dihydroxybenzoate ( 2), protocatechuic aldehyde( 3), caffeic acid methyl ester( 4), vanillic acid( 5), 4-hydroxybenzoic acid( 6), caffeic acid ethyl ester( 7), chlorogenic acid( 8), caffeic acid( 9), 3, 4-di-O-caffeoylquinic acid( 10). Conclusion: Compounds 1 ~ 5,7 and 10 are isolated from this plant for the first time.


Subject(s)
Xanthium , Caffeic Acids , Chlorogenic Acid , Hydroxybenzoates , Parabens , Quinic Acid/analogs & derivatives , Vanillic Acid
6.
Huan Jing Ke Xue ; 33(1): 253-9, 2012 Jan.
Article in Chinese | MEDLINE | ID: mdl-22452219

ABSTRACT

The concentrations of heavy metals (Cu, Zn, Pb, Cr, Cd) in street dusts were investigated in six different functional zones of Luoyang City, i.e., urban-rural continuum, urban artery, industrial district, urban green space, residential district, and business district. The pollution levels and potential ecological risk of heavy metals were assessed by the methods of potential ecological risk index suggested by Håkanson. The results showed that heavy metal concentrations in street dusts from different functional zones of Luoyang City were all higher than soil background values in Henan, with average concentrations of Zn (1019.75 mg x kg(-1)) > Cr (401.63 mg x kg(-1)) > Cu (240.94 mg x kg(-1)) > Pb (176.04 mg x kg(-1)) > Cd (2.33 mg x kg(-1)). Cd was the most seriously polluted metal in all functional zones, and the average pollution index (Cf(i)) reached 35.84, following by Zn (16.32) > Cu (12.05) > Pb (7.90) > Cr (6.36). Heavy metal concentrations and pollution levels varied greatly in different functional zones, and industrial zone had the highest total contents and the heaviest pollution. The integrated potential ecological risk index (RI) in different functional zones all reached very strong levels, with an order of industrial district (1709.51) > urban green space (1581.50) > business district (1 297.45) > residential district (1 111.25) > urban artery (889.97) > urban-rural continuum (641.39). Among the surveyed heavy metals, Cd accounted for the major potential ecological risk, and the average potential ecological risk index (Er(i)) reached 1075.16 (extremely strong risk level) in all six functional zones. The average Er(i) of Cu and Pb reached 60.23 and 40.77 respectively, belonging to moderate risk level, while Zn (16.32) and Cr (12.71) only reached slight risk level. A reduction in industrial and traffic pollution might be the key measure to decrease the heavy metal pollution and potential risk in street dusts.


Subject(s)
Dust/analysis , Ecosystem , Environmental Monitoring , Environmental Pollutants/analysis , Metals, Heavy/analysis , Cadmium/analysis , China , Cities , Copper/analysis , Lead/analysis , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...