Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biofabrication ; 15(4)2023 09 15.
Article in English | MEDLINE | ID: mdl-37607551

ABSTRACT

Spheroids are microtissues containing cells organized in a spherical shape whose diameter is usually less than a millimetre. Depending on the properties of the environment they are placed in, some nearby spheroids spontaneously fuse and generate a tissue. Given their potential to mimic features typical of body parts and their ability to assemble by fusing in permissive hydrogels, they have been used as building blocks to 3D bioprint human tissue parts. Parameters controlling the shape and size of a bioprinted tissue using fusing spheroid cultures include cell composition, hydrogel properties, and their relative initial position. Hence, simulating, anticipating, and then controlling the spheroid fusion process is essential to control the shape and size of the bioprinted tissue. This study presents the first physically-based framework to simulate the fusion process of bioprinted spheroids. The simulation is based on elastic-plastic solid and fluid continuum mechanics models. Both models use the 'smoothed particle hydrodynamics' method, which is based on discretizing the continuous medium into a finite number of particles and solving the differential equations related to the physical properties (e.g. Navier-Stokes equation) using a smoothing kernel function. To further investigate the effects of such parameters on spheroid shape and geometry, we performed sensitivity and morphological analysis to validate our simulations within-vitrospheroids. Through ourin-silicosimulations by changing the aforementioned parameters, we show that the proposed models appropriately simulate the range of the elastic-plastic behaviours ofin-vitrofusing spheroids to generate tissues of desired shapes and sizes. Altogether, this study presented a physically-based simulation that can provide a framework for monitoring and controlling the geometrical shape of spheroids, directly impacting future research using spheroids for tissue bioprinting.


Subject(s)
Bioprinting , Humans , Computer Simulation , Hydrodynamics , Hydrogels , Plastics
2.
STAR Protoc ; 3(4): 101751, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36209428

ABSTRACT

Myocardial infarction (MI) is the primary cause of death worldwide, but there are no clinically relevant models to study MI. Here, we describe an ischemia/reperfusion (I/R) injury model typical of MI using mouse or human 3D in vitro cardiac spheroids (CSs). First, we demonstrated the culture and maintenance of CSs. Then, we detailed how to expose CSs to pathophysiological oxygen concentrations to induce I/R injury. The protocol can be used in combination with viability, contractility, and mRNA expression level measurements. For complete details on the use and execution of this protocol, please refer to Sharma et al. (2022).


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Humans , Mice , Animals , Myocardial Reperfusion Injury/etiology , Disease Models, Animal , Heart , Myocardial Infarction/complications
3.
Biofabrication ; 14(2)2022 01 24.
Article in English | MEDLINE | ID: mdl-34983029

ABSTRACT

Current preclinicalin vitroandin vivomodels of cardiac injury typical of myocardial infarction (MI, or heart attack) and drug induced cardiotoxicity mimic only a few aspects of these complex scenarios. This leads to a poor translation of findings from the bench to the bedside. In this study, we biofabricated for the first time advancedin vitromodels of MI and doxorubicin (DOX) induced injury by exposing cardiac spheroids (CSs) to pathophysiological changes in oxygen (O2) levels or DOX treatment. Then, contractile function and cell death was analyzed in CSs in control verses I/R and DOX CSs. For a deeper dig into cell death analysis, 3D rendering analyses and mRNA level changes of cardiac damage-related genes were compared in control verses I/R and DOX CSs. Overall,in vitroCSs recapitulated major features typical of thein vivoMI and drug induced cardiac damages, such as adapting intracellular alterations to O2concentration changes and incubation with cardiotoxic drug, mimicking the contraction frequency and fractional shortening and changes in mRNA expression levels for genes regulating sarcomere structure, calcium transport, cell cycle, cardiac remodelling and signal transduction. Taken together, our study supports the use of I/R and DOX CSs as advancedin vitromodels to study MI and DOX-induced cardiac damge by recapitulating their complexin vivoscenario.


Subject(s)
Myocardial Infarction , Myocardium , Cardiotoxicity/metabolism , Doxorubicin/pharmacology , Heart , Humans , Myocardium/metabolism , Myocytes, Cardiac/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
Biofabrication ; 13(4)2021 08 13.
Article in English | MEDLINE | ID: mdl-34265755

ABSTRACT

Currentin vivoandin vitromodels fail to accurately recapitulate the human heart microenvironment for biomedical applications. This study explores the use of cardiac spheroids (CSs) to biofabricate advancedin vitromodels of the human heart. CSs were created from human cardiac myocytes, fibroblasts and endothelial cells (ECs), mixed within optimal alginate/gelatin hydrogels and then bioprinted on a microelectrode plate for drug testing. Bioprinted CSs maintained their structure and viability for at least 30 d after printing. Vascular endothelial growth factor (VEGF) promoted EC branching from CSs within hydrogels. Alginate/gelatin-based hydrogels enabled spheroids fusion, which was further facilitated by addition of VEGF. Bioprinted CSs contracted spontaneously and under stimulation, allowing to record contractile and electrical signals on the microelectrode plates for industrial applications. Taken together, our findings indicate that bioprinted CSs can be used to biofabricate human heart tissues for long termin vitrotesting. This has the potential to be used to study biochemical, physiological and pharmacological features of human heart tissue.


Subject(s)
Bioprinting , Endothelial Cells , Humans , Hydrogels , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Vascular Endothelial Growth Factor A
5.
Cells ; 10(4)2021 04 14.
Article in English | MEDLINE | ID: mdl-33919808

ABSTRACT

Preeclampsia is a multifactorial cardiovascular disorder diagnosed after 20 weeks of gestation, and is the leading cause of death for both mothers and babies in pregnancy. The pathophysiology remains poorly understood due to the variability and unpredictability of disease manifestation when studied in animal models. After preeclampsia, both mothers and offspring have a higher risk of cardiovascular disease (CVD), including myocardial infarction or heart attack and heart failure (HF). Myocardial infarction is an acute myocardial damage that can be treated through reperfusion; however, this therapeutic approach leads to ischemic/reperfusion injury (IRI), often leading to HF. In this review, we compared the current in vivo, in vitro and ex vivo model systems used to study preeclampsia, IRI and HF. Future studies aiming at evaluating CVD in preeclampsia patients could benefit from novel models that better mimic the complex scenario described in this article.


Subject(s)
Cardiovascular Diseases/complications , Cardiovascular Diseases/pathology , Models, Biological , Pre-Eclampsia/pathology , Female , Heart Failure/complications , Humans , Microfluidics , Myocardial Reperfusion Injury/complications , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...