Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.469
Filter
1.
FASEB J ; 38(13): e23756, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38949649

ABSTRACT

Asthma is a chronic pulmonary disease with the worldwide prevalence. The structural alterations of airway walls, termed as "airway remodeling", are documented as the core contributor to the airway dysfunction during chronic asthma. Forkhead box transcription factor FOXK2 is a critical regulator of glycolysis, a metabolic reprogramming pathway linked to pulmonary fibrosis. However, the role of FOXK2 in asthma waits further explored. In this study, the chronic asthmatic mice were induced via ovalbumin (OVA) sensitization and repetitive OVA challenge. FOXK2 was upregulated in the lungs of OVA mice and downregulated after adenovirus-mediated FOXK2 silencing. The lung inflammation, peribronchial collagen deposition, and glycolysis in OVA mice were obviously attenuated after FOXK2 knockdown. Besides, the expressions of FOXK2 and SIRT2 in human bronchial epithelial cells (BEAS-2B) were increasingly upregulated upon TGF-ß1 stimulation and downregulated after FOXK2 knockdown. Moreover, the functional loss of FOXK2 remarkably suppressed TGF-ß1-induced epithelial-mesenchymal transition (EMT) and glycolysis in BEAS-2B cells, as manifested by the altered expressions of EMT markers and glycolysis enzymes. The glycolysis inhibitor 2-deoxy-d-glucose (2-DG) inhibited the EMT in TGF-ß1-induced cells, making glycolysis a driver of EMT. The binding of FOXK2 to SIRT2 was validated, and SIRT2 overexpression blocked the FOXK2 knockdown-mediated inhibition of EMT and glycolysis in TGF-ß1-treated cells, which suggests that FOXK2 regulates EMT and glycolysis in TGF-ß1-treated cells in a SIRT2-dependnet manner. Collectively, this study highlights the protective effect of FOXK2 knockdown on airway remodeling during chronic asthma.


Subject(s)
Airway Remodeling , Asthma , Forkhead Transcription Factors , Glycolysis , Sirtuin 2 , Asthma/metabolism , Asthma/pathology , Animals , Sirtuin 2/metabolism , Sirtuin 2/genetics , Mice , Airway Remodeling/physiology , Humans , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Epithelial-Mesenchymal Transition , Mice, Inbred BALB C , Female , Transforming Growth Factor beta1/metabolism , Lung/metabolism , Lung/pathology , Cell Line
2.
J Phys Chem Lett ; : 7028-7035, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949686

ABSTRACT

Traditional electron counting rules, like the Jellium model, have long been successfully utilized in designing superhalogens by modifying clusters to have one electron less than a filled electronic shell. However, this shell-filling approach, which involves altering the intrinsic properties of the clusters, can be complex and challenging to control, especially in experiments. In this letter, we theoretically establish that the oriented external electric field (OEEF) can substantially enhance the electron affinity (EA) of diverse aluminum-based metal clusters with varying valence electron configurations, leading to the creation of superhalogen species without altering their shell arrangements. This OEEF approach offers a noninvasive alternative to traditional superatom design strategies, as it does not disrupt the clusters' geometrical structures and superatomic states. These findings contribute a vital piece to the puzzle of constructing superalkalis and superhalogens, extending beyond conventional shell-filling strategies and potentially expanding the range of applications for functional clusters.

3.
Eur J Med Chem ; 276: 116630, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38972081

ABSTRACT

We report here on the structure-activity relationships of hybrids combining 3-descladinosyl clarithromycin with quinolones linked by extended diamine connectors. Several hybrids, exemplified by 23Bc, 23Be, 23Bf, 26Be, and 30Bc, not only restored potency against inducibly resistant pathogens but also exhibited significantly enhanced activities against constitutively resistant strains of Staphylococcus pneumoniae and Staphylococcus pyogenes, which express high-level resistance independent of clarithromycin or erythromycin induction. Additionally, the novel hybrids showed susceptibility against Gram-negative Haemophilus influenzae. Notably, hybrid 23Be demonstrated dual modes of action by inhibiting both protein synthesis and DNA replication in vitro and in vivo. Given these promising characteristics, 23Be emerges as a potential candidate for the treatment of community-acquired bacterial pneumonia.

4.
J Asian Nat Prod Res ; : 1-8, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38973288

ABSTRACT

Two new cucurbitane-type triterpenoid saponins, 2,20ß,22ß-trihydroxy-16α,23(R)-epoxycucurbita-1,5,24-triene-3,11-dione 2-O-ß-D-glucopyranoside (1), 2,20ß,22α-trihydroxy-16α,23(S)-epoxycucurbita-1,5,11,24-tetraene-3-one 2-O-ß-D-glucopyranoside (2) were isolated from the fruit of Citrullus colocynthis (L.) Schrad. Their structures were elucidated by mass spectrometry, IR, 1D, and 2D NMR spectroscopy, etc. Besides, both of the compounds showed significant hepatoprotective activities at 10 µM against paracetamol-induced HepG2 cell damage.

5.
Article in English | MEDLINE | ID: mdl-38849114

ABSTRACT

OBJECTIVES: Hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKp) poses a significant threat to public health. This study reports an infection related to hv-CRKp in a premature infant and reveals its colistin resistance and evolutionary mechanisms within the host. METHODS: Three KPC-producing CRKp strains were isolated from a patient with sepsis and CRKp osteoarthritis who had been receiving colistin antimicrobial therapy. The minimum inhibitory concentrations (MICs) of Ceftazidime,Ceftazidime-Avibactam(CAZ-AVI),Meropenem,Imipenem,Tigecycline,Amikacin,Minocycline,Sulfamethoxazole/Trimethoprim,Ciprofloxacin,Levofloxacin,Aztreonam,Cefepime,Cefoperazone/Sulbactam,Piperacillin/Tazobactam and colistin were determined using the microbroth dilution method.The whole-genome sequencing analysis was conducted to determine the STs, virulence genes, and antibiotic resistance genes of three CRKp strains. RESULTS: Whole-genome sequencing revealed that all three CRKp strains belonged to the sequence type (ST) 11 clone and carried a plasmid encoding blaKPC-2. The three strains all possessed the iucABCDiutA virulence cluster, peg-344 gene, and rmpA/rmpA2 genes, defining them as hv-CRKp. Further experiments and whole-genome analysis revealed that a strain of Kp has developed resistance to colistin. The mechanism found to be responsible for the colistin resistance was a deletion mutation of approximately 9000 bp including mgrB gene. CONCLUSION: This study characterizes the colistin resistance of ST11 clone hv-CRKp during colistin treatment and its rapid evolution within the host.

6.
Environ Res ; 257: 119291, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823607

ABSTRACT

The presence of butylparaben (BP), a prevalent pharmaceutical and personal care product, in surface waters has raised concerns regarding its impact on aquatic ecosystems. Despite its frequent detection, the toxicity of BP to the cyanobacterium Microcystis aeruginosa remains poorly understood. This study investigates the influence of BP on the growth and physiological responses of M. aeruginosa. Results indicate that low concentrations of BP (below 2.5 mg/L) have negligible effects on M. aeruginosa growth, whereas higher concentrations (5 mg/L and 10 mg/L) lead to significant growth inhibition. This inhibition is attributed to the severe disruption of photosynthesis, evidenced by decreased Fv/Fm values and chlorophyll a content. BP exposure also triggers the production of reactive oxygen species (ROS), resulting in elevated activity of antioxidant enzymes. Excessive ROS generation stimulates the production of microcystin-LR (MC-LR). Furthermore, lipid peroxidation and cell membrane damage indicate that high BP concentrations cause cell membrane rupture, facilitating the release of MC-LR into the environment. Transcriptome analysis reveals that BP disrupts energy metabolic processes, particularly affecting genes associated with photosynthesis, carbon fixation, electron transport, glycolysis, and the tricarboxylic acid cycle. These findings underscore the profound physiological impact of BP on M. aeruginosa and highlight its role in stimulating the production and release of MC-LR, thereby amplifying environmental risks in aquatic systems.

7.
J Gene Med ; 26(6): e3708, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837511

ABSTRACT

BACKGROUND: Lysophosphatidic acid (LPA) is a small bioactive lipid which acts as a potent regulator in various tumor progressions through six G-protein-coupled receptors (LPA1-LPA6). Our previous study demonstrated that the LPA-producing enzyme, autotaxin (ATX), was upregulated in esophageal squamous cell carcinoma (ESCC) and ATX high expression levels indicated a poor prognosis. Esophageal squamous cell carcinoma is a type of malignant tumor which originates from epithelial cells. Its progression can be affected by the interaction between cancer cells and normal cells. However, the impact of LPA on the interaction between esophageal epithelial cells and cancer cells in the development of ESCC remains uncertain. METHODS: MTS and Edu assays were performed to determine ESCC cell proliferation in culture medium (CM) derived from LPA-stimulated esophageal epithelial cells (Het-1a). A wound healing assay, transwell migration and an invasion assay were performed to assess the metastatic ability of ESCC cells. Cytokine array analysis was conducted to detect the differentially secreted cytokines in CM. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to uncover the pathways and cytokines that are influenced by LPA in ESCC. Immunohistochemical staining was employed to measure the expression of ATX and CCL2 in early-stage ESCC. Quantitative real-time PCR, western blot, enzyme-linked immunosorbent assay and an antibody neutralization assay were employed to measure the mechanism of LPA-mediated communication between epithelial cells and cancer cells. RESULTS: Functional experiments showed that exposing ESCC cancer cells to CM from LPA-treated Het-1a results in promoting proliferation, migration, invasion and epithelial-mesenchymal transition processes. Using cytokine array analysis, we discovered that LPA triggers the release of multiple cytokines from epithelial cells. After screening of the TCGA and GEO databases, CCL2 was identified and found to be correlated with ATX expression in ESCC. Furthermore, CCL2 levels in both mRNA expression and secretion were observed to be upregulated in epithelial cells upon stimulation with LPA. Blocking CCL2 effectively reduced the pro-migration influence of CM derived from LPA-treated Het-1a. Mechanism studies have demonstrated that LPA activated the NF-κB signaling pathway through LPA1/3, ultimately causing an increase in CCL2 expression and secretion in Het-1a. CONCLUSIONS: Our findings, taken together, demonstrate that CM from LPA-treated esophageal epithelial cells plays a significant role in promoting the progression of ESCC, with CCL2 acting as the primary regulator.


Subject(s)
Cell Movement , Cell Proliferation , Chemokine CCL2 , Epithelial Cells , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Gene Expression Regulation, Neoplastic , Lysophospholipids , Humans , Lysophospholipids/metabolism , Lysophospholipids/pharmacology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Cell Movement/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Disease Progression , Signal Transduction/drug effects , Esophagus/metabolism , Esophagus/pathology , Esophagus/drug effects , Epithelial-Mesenchymal Transition/drug effects
8.
Cell Mol Neurobiol ; 44(1): 50, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856921

ABSTRACT

In recent years, spatial transcriptomics (ST) research has become a popular field of study and has shown great potential in medicine. However, there are few bibliometric analyses in this field. Thus, in this study, we aimed to find and analyze the frontiers and trends of this medical research field based on the available literature. A computerized search was applied to the WoSCC (Web of Science Core Collection) Database for literature published from 2006 to 2023. Complete records of all literature and cited references were extracted and screened. The bibliometric analysis and visualization were performed using CiteSpace, VOSviewer, Bibliometrix R Package software, and Scimago Graphica. A total of 1467 papers and reviews were included. The analysis revealed that the ST publication and citation results have shown a rapid upward trend over the last 3 years. Nature Communications and Nature were the most productive and most co-cited journals, respectively. In the comprehensive global collaborative network, the United States is the country with the most organizations and publications, followed closely by China and the United Kingdom. The author Joakim Lundeberg published the most cited paper, while Patrik L. Ståhl ranked first among co-cited authors. The hot topics in ST are tissue recognition, cancer, heterogeneity, immunotherapy, differentiation, and models. ST technologies have greatly contributed to in-depth research in medical fields such as oncology and neuroscience, opening up new possibilities for the diagnosis and treatment of diseases. Moreover, artificial intelligence and big data drive additional development in ST fields.


Subject(s)
Bibliometrics , Transcriptome , Humans , Transcriptome/genetics , Publications , Animals
9.
Br J Cancer ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877108

ABSTRACT

BACKGROUND: Targeting DNA damage repair factors, such as DNA-dependent protein kinase catalytic subunit (DNA-PKcs), may offer an opportunity for effective treatment of multiple myeloma (MM). In combination with DNA damage-inducing agents, this strategy has been shown to improve chemotherapies partially via activation of cGAS-STING pathway by an elevated level of cytosolic DNA. However, as cGAS is primarily sequestered by chromatin in the nucleus, it remains unclear how cGAS is released from chromatin and translocated into the cytoplasm upon DNA damage, leading to cGAS-STING activation. METHODS: We examined the role of DNA-PKcs inhibition on cGAS-STING-mediated MM chemosensitivity by performing mass spectrometry and mechanism study. RESULTS: Here, we found DNA-PKcs inhibition potentiated DNA damage-inducing agent doxorubicin-induced anti-MM effect by activating cGAS-STING signaling. The cGAS-STING activation in MM cells caused cell death partly via IRF3-NOXA-BAK axis and induced M1 polarization of macrophages. Moreover, this activation was not caused by defective classical non-homologous end joining (c-NHEJ). Instead, upon DNA damage induced by doxorubicin, inhibition of DNA-PKcs promoted cGAS release from cytoplasmic chromatin fragments and increased the amount of cytosolic cGAS and DNA, activating cGAS-STING. CONCLUSIONS: Inhibition of DNA-PKcs could improve the efficacy of doxorubicin in treatment of MM by de-sequestrating cGAS in damaged chromatin.

10.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 533-540, 2024 Jun 18.
Article in Chinese | MEDLINE | ID: mdl-38864141

ABSTRACT

OBJECTIVE: To analyze the clinical data of histiocytic necrotizing lymphadenitis(HNL), comparing the similarities and differences between children and adults, to deepen the understanding of the disease by clinical physicians, and to improve diagnostic rate and reduce misdiagnosis and mistreatment. METHODS: The clinical data of hospitalized patients with histiocytic necrotizing lymphadenitis diagnosed by biopsy from January 2010 to August 2023 in Peking University First Hospital were collec-ted, and the clinical features, laboratory examinations, pathological features, treatments with antibiotics and glucocorticoids, and prognosis of histiocytic necrotic lymphadenitis were analyzed. Grouped based on age, the differences of clinical characteristics, laboratory tests, treatment, and prognosis between the children group (< 16 years old) and the adult group (≥16 years old) were compared. RESULTS: Among the 81 enrolled patients, there were 42 males and 39 females. The median age was 21(14, 29) years, the median duration of disease was 20.0(13.0, 30.0) days, and the median length of hospital stay was 13.0 (10.0, 15.0) days. The first symptoms were fever, lymphadenopathy, and both. All the patients had enlarged lymph nodes with different parts and sizes, 96.3% (78 of 81) of the patients had cervical lymphadenopathy, 50.6% (41 of 81) had bilateral cervical lymphadenopathy, 55.6% (45 of 81) had supraclavicular, axillary or inguinal lymphadenopathy, and the median lymph node diameter was 20.0(20.0, 30.0) mm. Only one patient had no fever, the other 80 patients had fever, the median peak body temperature was 39.0(38.0, 39.8) ℃. Accompanying symptoms: rash (8.6%, 7/81), fatigue (34.6%, 28/81), night sweating (8.6%, 7/81), chills (25.3%, 25/81), muscle soreness (13.6%, 11/81), and joint pain (6.2%, 5/81). There were 17 cases (21.0%, 17/81) of hepatosplenomegaly, of which 12 cases (70.6%, 12/17) were splenomegaly. 68.8%(55/80) of patients had a decrease in white blood cell (WBC) count, with 47.5%(38/80)increased in lymphocyte(LY)proportion, 53.4%(39/73) increased in high-sensitivity C-reactive protein(CRP), 79.2%(57/72) increased in erythrocyte sedimentation rate(ESR), 22.2%(18/81) increased in alanine transaminase(ALT), 27.2%(22/81) elevated in aspartate transaminase(AST), and 81.6%(62/76) elevated in lactate dehydrogenase(LDH). All the 81 patients underwent lymph node biopsy, and 77.8%(63/81) of the patients showed that most of the structures in the lymph nodes were destroyed or disappeared, and 16.0%(13/81) of the lymph nodes were still in existence, hyperplasia and normal lymph node were 1.2%(1/81) respectively, and 3.7%(3/81) had normal lymph node structures. Immunohistochemical staining was performed in 67 cases. The percentages of CD3+ and CD68(KP1)+ were respectively 97.0%(65/67), and MPO+ were 94.0%(63/67). In the study, 51 patients (63.0%, 51/81) were treated with glucocorticoid therapy after diagnosis. The median time for temperature to return to normal was 1.0(1.0, 4.0) days after glucocorticoid therapy. when the glucocorticoid treatment worked best, the body temperature could drop to normal on the same day. There were significant differences in length of stay, predisposing factors, chills, the rate of increase in high-sensitivity CRP, antibiotic and glucocorticoid treatment between the adults and children groups (P < 0.05). CONCLUSION: In clinical practice, if there are cases with unexplained fever, superficial lymph node enlargement, and reduced white blood cells as clinical characteristics, and general antibiotics treatment is ineffective, histiocytic necrotic lymphadenitis should be considered. Lymph node biopsy should be performed as early as possible to clarify the diagnosis, reduce misdiagnosis and mistreatment, and symptomatic treatment should be the main treatment. Glucocorticoids therapy has a definite therapeutic effect.


Subject(s)
Histiocytic Necrotizing Lymphadenitis , Humans , Male , Histiocytic Necrotizing Lymphadenitis/diagnosis , Histiocytic Necrotizing Lymphadenitis/drug therapy , Histiocytic Necrotizing Lymphadenitis/pathology , Female , Adolescent , Adult , Young Adult , Child , Anti-Bacterial Agents/therapeutic use , Glucocorticoids/therapeutic use , Prognosis , Fever/etiology , Lymph Nodes/pathology , Lymphadenopathy/pathology
11.
HPB (Oxford) ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38830783

ABSTRACT

BACKGROUND: Postoperative complications are vital factors affecting the prognosis of patients with hepatocellular carcinoma (HCC), especially for complex hepatectomy. The present study aimed to compare perioperative complications between laparoscopic and robotic complex hepatectomy (LCH vs. RCH). METHODS: Patients with solitary HCC after complex hepatectomy were collected from a multicenter database. Propensity score-matched (PSM) analysis was adopted to control confounding bias. Multivariable analysis was performed to determine the prognostic factors. RESULTS: 436 patients were included. After PSM, 43 patients were included in both the LCH and RCH groups. The results showed that compared to LCH, RCH had lower rates of blood loss and transfusion, and lower postoperative 30-day and major morbidity, and post-hepatectomy liver failure (PHLF) (all P < 0.05). Additionally, the length of hospital stay was shorter in the RCH group (P = 0.026). Multivariable analysis showed RCH is an independent protective factor for reducing the 30-day morbidity, major morbidity and PHLF. CONCLUSION: RCH has advantages over LCH in the minimally invasive treatment of complex HCC, as it can reduce the incidence of postoperative morbidity. Therefore, RCH should be considered for patients with HCC who require complex hepatectomy.

12.
Theranostics ; 14(8): 3104-3126, 2024.
Article in English | MEDLINE | ID: mdl-38855191

ABSTRACT

Background: The stem or progenitor antecedents confer developmental plasticity and unique cell identities to cancer cells via genetic and epigenetic programs. A comprehensive characterization and mapping of the cell-of-origin of breast cancer using novel technologies to unveil novel subtype-specific therapeutic targets is still absent. Methods: We integrated 195,144 high-quality cells from normal breast tissues and 406,501 high-quality cells from primary breast cancer samples to create a large-scale single-cell atlas of human normal and cancerous breasts. Potential heterogeneous origin of malignant cells was explored by contrasting cancer cells against reference normal epithelial cells. Multi-omics analyses and both in vitro and in vivo experiments were performed to screen and validate potential subtype-specific treatment targets. Novel biomarkers of identified immune and stromal cell subpopulations were validated by immunohistochemistry in our cohort. Results: Tumor stratification based on cancer cell-of-origin patterns correlated with clinical outcomes, genomic aberrations and diverse microenvironment constitutions. We found that the luminal progenitor (LP) subtype was robustly associated with poor prognosis, genomic instability and dysfunctional immune microenvironment. However, the LP subtype patients were sensitive to neoadjuvant chemotherapy (NAC), PARP inhibitors (PARPi) and immunotherapy. The LP subtype-specific target PLK1 was investigated by both in vitro and in vivo experiments. Besides, large-scale single-cell profiling of breast cancer inspired us to identify a range of clinically relevant immune and stromal cell subpopulations, including subsets of innate lymphoid cells (ILCs), macrophages and endothelial cells. Conclusion: The present single-cell study revealed the cellular repertoire and cell-of-origin patterns of breast cancer. Combining single-cell and bulk transcriptome data, we elucidated the evolution mimicry from normal to malignant subtypes and expounded the LP subtype with vital clinical implications. Novel immune and stromal cell subpopulations of breast cancer identified in our study could be potential therapeutic targets. Taken together, Our findings lay the foundation for the precise prognostic and therapeutic stratification of breast cancer.


Subject(s)
Breast Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Humans , Single-Cell Analysis/methods , Female , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Tumor Microenvironment/immunology , Animals , Mice , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Prognosis
13.
Article in English | MEDLINE | ID: mdl-38910518

ABSTRACT

N-glycans play important roles in a variety of biological processes. In recent years, analytical technologies with high resolution and sensitivity have advanced exponentially, enabling analysts to investigate N-glycomic changes in different states. Specific glycan and glycosylation signatures have been identified in multiple diseases, including cancer, autoimmune diseases, nervous system disorders, and metabolic and cardiovascular diseases. These glycans demonstrate comparable or superior indicating capability in disease diagnosis and prognosis over routine biomarkers. Moreover, synchronous glycan alterations concurrent with disease initiation and progression provide novel insights into pathogenetic mechanisms and potential treatment targets. This review elucidates the biological significance of N-glycans, compares the existing glycomic technologies, and delineates the clinical performance of N-glycans across a range of diseases.

14.
JAMA Oncol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869865

ABSTRACT

Importance: Uninterrupted targeted therapy until disease progression or intolerable toxic effects is currently the routine therapy for advanced non-small cell lung cancer (NSCLC) involving driver gene variations. However, drug resistance is inevitable. Objective: To assess the clinical feasibility of adaptive de-escalation tyrosine kinase inhibitor (TKI) treatment guided by circulating tumor DNA (ctDNA) for achieving complete remission after local consolidative therapy (LCT) in patients with advanced NSCLC. Design, Setting, and Participants: This prospective nonrandomized trial was conducted at a single center from June 3, 2020, to July 19, 2022, and included 60 patients with advanced NSCLC with driver variations without radiologically detectable disease after TKI and LCT. The median (range) follow-up time was 19.2 (3.8-29.7) months. Data analysis was conducted from December 15, 2022, to May 10, 2023. Intervention: Cessation of TKI treatment and follow-up every 3 months. Treatment was restarted in patients with progressive disease (defined by the Response Evaluation Criteria in Solid Tumors 1.1 criteria), detectable ctDNA, or elevated carcinoembryonic antigen (CEA) levels, whichever manifested first, and treatment ceased if all indicators were negative during follow-up surveillance. Main Outcomes and Measures: Progression-free survival (PFS). Secondary end points were objective response rate, time to next treatment, and overall survival. Results: Among the total study sample of 60 participants (median [range] age, 55 [21-75] years; 33 [55%] were female), the median PFS was 18.4 (95% CI, 12.6-24.2) months and the median (range) total treatment break duration was 9.1 (1.5-28.1) months. Fourteen patients (group A) remained in TKI cessation with a median (range) treatment break duration of 20.3 (6.8-28.1) months; 31 patients (group B) received retreatment owing to detectable ctDNA and/or CEA and had a median PFS of 20.2 (95% CI, 12.9-27.4) months with a median (range) total treatment break duration of 8.8 (1.5-20.6) months; and 15 patients (group C) who underwent retreatment with TKIs due to progressive disease had a median PFS of 5.5 (95% CI, 1.5-7.2) months. For all participants, the TKI retreatment response rate was 96%, the median time to next treatment was 29.3 (95% CI, 25.3-35.2) months, and the data for overall survival were immature. Conclusions and Relevance: The findings of this nonrandomized trial suggest that this adaptive de-escalation TKI strategy for patients with NSCLC is feasible in those with no lesions after LCT and a negative ctDNA test result. This might provide a de-escalation treatment strategy guided by ctDNA for the subset of patients with advanced NSCLC. Trial Registration: ClinicalTrials.gov Identifier: NCT03046316.

16.
Hum Reprod ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942602

ABSTRACT

STUDY QUESTION: Can pregnancy outcomes following fresh elective single embryo transfer (eSET) in gonadotropin-releasing hormone (GnRH) antagonist protocols increase using a gonadotropin (Gn) step-down approach with cessation of GnRH antagonist on the day of hCG administration (hCG day) in patients with normal ovarian response? SUMMARY ANSWER: The modified GnRH antagonist protocol using the Gn step-down approach and cessation of GnRH antagonist on the hCG day is effective in improving live birth rates (LBRs) per fresh eSET cycle. WHAT IS KNOWN ALREADY: Currently, there is no consensus on optimal GnRH antagonist regimens. Studies have shown that fresh GnRH antagonist cycles result in poorer pregnancy outcomes than the long GnRH agonist (GnRHa) protocol. Endometrial receptivity is a key factor that contributes to this phenomenon. STUDY DESIGN, SIZE, DURATION: An open label randomized controlled trial (RCT) was performed between November 2021 and August 2022. There were 546 patients allocated to either the modified GnRH antagonist or the conventional antagonist protocol at a 1:1 ratio. PARTICIPANTS/MATERIALS, SETTING, METHODS: Both IVF and ICSI cycles were included, and the sperm samples used were either fresh or frozen from the partner, or from frozen donor ejaculates. The primary outcome was the LBRs per fresh SET cycle. Secondary outcomes included rates of implantation, clinical and ongoing pregnancy, miscarriage, and ovarian hyperstimulation syndrome (OHSS), as well as clinical outcomes of ovarian stimulation. MAIN RESULTS AND THE ROLE OF CHANCE: Baseline demographic features were not significantly different between the two ovarian stimulation groups. However, in the intention-to-treat (ITT) population, the LBRs in the modified antagonist group were significantly higher than in the conventional group (38.1% [104/273] vs. 27.5% [75/273], relative risk 1.39 [95% CI, 1.09-1.77], P = 0.008). Using a per-protocol (PP) analysis which included all the patients who received an embryo transfer, the LBRs in the modified antagonist group were also significantly higher than in the conventional group (48.6% [103/212] vs. 36.8% [74/201], relative risk 1.32 [95% CI, 1.05-1.66], P = 0.016). The modified antagonist group achieved significantly higher implantation rates, and clinical and ongoing pregnancy rates than the conventional group in both the ITT and PP analyses (P < 0.05). The two groups did not show significant differences between the number of oocytes retrieved or mature oocytes, two-pronuclear zygote (2PN) rates, the number of embryos obtained, blastocyst progression and good-quality embryo rates, early miscarriage rates, or OHSS incidence rates (P > 0.05). LIMITATIONS, REASONS FOR CAUTION: A limitation of our study was that the subjects were not blinded to the treatment allocation in the RCT trial. Only women under 40 years of age who had a good prognosis were included in the analysis. Therefore, use of the modified antagonist protocol in older patients with a low ovarian reserve remains to be investigated. In addition, the sample size for Day 5 elective SET was small, so larger trials will be required to strengthen these findings. WIDER IMPLICATIONS OF THE FINDINGS: The modified GnRH antagonist protocol using the Gn step-down approach and cessation of GnRH antagonist on hCG day improved the LBRs per fresh eSET cycle in normal responders. STUDY FUNDING/COMPETING INTEREST(S): This project was funded by grant 2022YFC2702503 from the National Key Research & Development Program of China and grant 2021140 from the Beijing Health Promotion Association. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: The RCT was registered in the Chinese Clinical Trial Registry; Study Number: ChiCTR2100053453. TRIAL REGISTRATION DATE: 21 November 2021. DATE OF FIRST PATIENT'S ENROLLMENT: 23 November 2021.

17.
Adv Mater ; : e2405874, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924239

ABSTRACT

High-quality imaging units are indispensable in modern optoelectronic systems for accurate recognition and processing of optical information. To fulfill massive and complex imaging tasks in digital age, devices with remarkable photoresponsive characteristics and versatile reconfigurable functions on a single device platform are in demand but remain challenging to fabricate. We report an AlGaN/GaN-based double-heterostructure, incorporated with a unique compositionally graded AlGaN structure to generate a channel of polarization-induced two-dimensional electrons that can be modulated to control electron separation, collection, and storage process in the channel of the fabricated phototransistor. As a result, when exposed to different light sources, the device shows reconfigurable multifunctional photoresponsive behaviors with superior characteristics owing to the successful programming of the 2DEGs by the combined gate and drain voltage inputs. A self-powered mode with a responsivity over 100 A/W and a photoconductive mode with a responsivity of ∼108 A/W were achieved, with the ultimate demonstration of a 10×10 device array for imaging. More intriguingly, the device can be switched to photoelectric synapse mode, emulating synaptic functions to denoise the imaging process while prolonging the image storage capability. Demonstrating three-in-one operational characteristics in a single device offers a new path toward future integrated and multifunctional imaging units. This article is protected by copyright. All rights reserved.

18.
J Phys Chem A ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917472

ABSTRACT

The identification of the non-noble metal constituted TaO cluster as a potential analogue to the noble metal Au is significant for the development of tailored materials. It leverages the superatom concept to engineer properties with precision. However, the impact of incrementally integrating TaO units on the electronic configurations and properties within larger TaO-based clusters remains to be elucidated. By employing the density functional theory calculations, the global minima and low-lying isomers of the TanOn (n = 2-5) clusters were determined, and their structural evolution was disclosed. In the cluster series, Ta5O5 was found to possess the highest electron affinity (EA) with a value of 2.14 eV, based on which a dual external field (DEF) strategy was applied to regulate the electronic property of the cluster. Initially, the electron-withdrawing CO ligand was affixed to Ta5O5, followed by the application of an oriented external electric field (OEEF). The CO ligation was found to be able to enhance the Ta5O5 cluster's electron capture capability by adjusting its electron energy levels, with the EA of Ta5O5(CO)4 peaking at 2.58 eV. Subsequently, the introduction of OEEF further elevated the EA of the CO-ligated cluster. Notably, OEEF, when applied along the +x axis, was observed to sharply increase the EA to 3.26 eV, meeting the criteria for superhalogens. The enhancement of EA in response to OEEF intensity can be quantified as a functional relationship. This finding highlights the advantage of OEEF over conventional methods, demonstrating its capacity for precise and continuous modulation of cluster EAs. Consequently, this research has adeptly transformed tantalum oxide clusters into superhalogen structures, underscoring the effectiveness of the DEF strategy in augmenting cluster EAs and its promise as a viable tool for the creation of superhalogens.

19.
Chem Biodivers ; : e202302059, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38736027

ABSTRACT

This study extracted and purified a polysaccharide from Rehmanniae radix praeparata (RGP) with an average molecular weight. The structural characteristics of RGP and its iron (III) complex, RGP-Fe(III), were examined for their antioxidant properties and potential in treating iron deficiency anemia (IDA). Analysis revealed that RGP comprised Man, Rha, Gal, and Xyl, with a sugar residue skeleton featuring 1→3; 1→2, 3; and 1→2, 3, 4 linkages, among others. RGP-Fe(III) had a molecular weight of 4.39×104 Da. Notably, RGP-Fe(III) exhibited superior antioxidant activity compared to RGP alone. In IDA rat models, treatment with RGP-Fe(III) led to increased weight gain, restoration of key blood parameters including hemoglobin, red blood cells, and mean hemoglobin content, elevated serum iron levels, and decreased total iron-binding capacity. Histological examination revealed no observable toxic effects of RGP-Fe(III) on the liver and spleen. These findings suggest the potential of RGP-Fe(III) as a therapeutic agent for managing IDA and highlight its promising antioxidant properties.

20.
Cell Commun Signal ; 22(1): 263, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730482

ABSTRACT

BACKGROUND: Helicobacter pylori (H. pylori) is the predominant etiological agent of gastritis and disrupts the integrity of the gastric mucosal barrier through various pathogenic mechanisms. After H. pylori invades the gastric mucosa, it interacts with immune cells in the lamina propria. Macrophages are central players in the inflammatory response, and H. pylori stimulates them to secrete a variety of inflammatory factors, leading to the chronic damage of the gastric mucosa. Therefore, the study aims to explore the mechanism of gastric mucosal injury caused by inflammatory factors secreted by macrophages, which may provide a new mechanism for the development of H. pylori-related gastritis. METHODS: The expression and secretion of CCL3 from H. pylori infected macrophages were detected by RT-qPCR, Western blot and ELISA. The effect of H. pylori-infected macrophage culture medium and CCL3 on gastric epithelial cells tight junctions were analyzed by Western blot, immunofluorescence and transepithelial electrical resistance. EdU and apoptotic flow cytometry assays were used to detect cell proliferation and apoptosis levels. Dual-luciferase reporter assays and chromatin immunoprecipitation assays were used to study CCL3 transcription factors. Finally, gastric mucosal tissue inflammation and CCL3 expression were analyzed by hematoxylin and eosin staining and immunohistochemistry. RESULTS: After H. pylori infection, CCL3 expressed and secreted from macrophages were increased. H. pylori-infected macrophage culture medium and CCL3 disrupted gastric epithelial cells tight junctions, while CCL3 neutralizing antibody and receptor inhibitor of CCL3 improved the disruption of tight junctions between cells. In addition, H. pylori-infected macrophage culture medium and CCL3 recombinant proteins stimulated P38 phosphorylation, and P38 phosphorylation inhibitor improved the disruption of tight junctions between cells. Besides, it was identified that STAT1 was a transcription factor of CCL3 and H. pylori stimulated macrophage to secret CCL3 through the JAK1-STAT1 pathway. Finally, after mice were injected with murine CCL3 recombinant protein, the gastric mucosal injury and inflammation were aggravated, and the phosphorylation level of P38 was increased. CONCLUSIONS: In summary, our findings demonstrate that H. pylori infection stimulates macrophages to secrete CCL3 via the JAK1-STAT1 pathway. Subsequently, CCL3 damages gastric epithelial tight junctions through the phosphorylation of P38. This may be a novel mechanism of gastric mucosal injury in H. pylori-associated gastritis.


Subject(s)
Chemokine CCL3 , Gastric Mucosa , Helicobacter Infections , Helicobacter pylori , Macrophages , Helicobacter pylori/physiology , Chemokine CCL3/metabolism , Chemokine CCL3/genetics , Animals , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Gastric Mucosa/microbiology , Macrophages/metabolism , Macrophages/microbiology , Mice , Helicobacter Infections/metabolism , Helicobacter Infections/pathology , Homeostasis , Mice, Inbred C57BL , Humans , Apoptosis , Cell Proliferation , Male , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...