Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.318
Filter
1.
Int J Biol Macromol ; : 134346, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094883

ABSTRACT

To date, although the high-carbohydrate (HC) feed has been extensively adopted in the aquaculture industry, its effects on the intestinal function and development of aquatic animals still remain unclear. In addition, the corresponding nutritional intervention is still barely reported. This study aimed to evaluate the influence of xylooligosaccharides (XOS) on the intestinal health of Megalobrama amblycephala subjected to a HC feeding. Fish (average weight: 44.55 ±â€¯0.15 g) were randomly offered 3 diets, including a control one (29 % carbohydrate), a HC one (41 % carbohydrate), and a XOS supplemented one (HC + 1.0 % XOS, HCX) respectively for 12 weeks. The HC feeding caused morphological abnormalities of intestine, an increased intestinal permeability, and the intestinal immunosuppression, all of which were markedly reversed by XOS administration. In addition, compared with the HC group, HCX feeding remarkably promoted the intestinal activities of digestive and brush border enzymes, and the expressions of cell proliferation-related proteins (Wnt10b and Cyclin D1). The 16s rDNA sequencing also revealed that XOS administration increased the abundance of beneficial bacteria, and decreased that of pathogenic ones. In conclusion, dietary supplementation of XOS improved the intestinal histomorphology, barrier function, cell proliferation and bacterial communities of carbohydrate-overloaded fish Megalobrama amblycephala.

2.
Front Vet Sci ; 11: 1387719, 2024.
Article in English | MEDLINE | ID: mdl-39086760

ABSTRACT

Background: Haemaphysalis flava is a notorious parasite for humans and animals worldwide. The organs of H. flava are bathed in hemolymph, which is a freely circulating fluid. Nutrients, immune factors, and waste can be transported to any part of the body via hemolymph. The main soluble components in hemolymph are proteins. However, knowledge of the H. flava proteome is limited. Methods: The hemolymph was collected from fully engorged H. flava ticks by leg amputation. Hemolymph proteins were examined by both blue native polyacrylamide gel electrophoresis (BN-PAGE) and sodium dodecyl sulfate PAGE (SDS-PAGE). Proteins extracted from the gels were further identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results: Two bands (380 and 520 kDa) were separated from tick hemolymph by BN-PAGE and were further separated into four bands (105, 120, 130, and 360 kDa) by SDS-PAGE. LC-MS/MS revealed that seven tick proteins and 13 host proteins were present in the four bands. These tick proteins mainly belonged to the vitellogenin (Vg) family and the α-macroglobulin family members. In silico structural analysis showed that these Vg family members all had common conserved domains, including the N-terminus lipid binding domain (LPD-N), the C-terminus von Willebrand type D domain (vWD), and the domain of unknown function (DUF). Additionally, two of the Vg family proteins were determined to belong to the carrier protein (CP) by analyzing the unique N-terminal amino acid sequences and the cleaving sites. Conclusion: These findings suggest that the Vg family proteins and α-macroglobulin are the primary constituents of the hemolymph in the form of protein complexes. Our results provide a valuable resource for further functional investigations of H. flava hemolymph effectors and may be useful in tick management.

3.
Chem Commun (Camb) ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39091214

ABSTRACT

A highly enantioselective Pd/Bim-catalyzed dearomative Michael reaction applying polycyclic tropones as non-benzenoid aromatic Michael acceptors and arylboronic acids as aryl pronucleophiles has been developed. The bridged biaryls bearing central and axial chirality, including pentacyclic cyclohepta[b]indoles and 6,7-dihydrodibenzo[a,c][7]annulen-5-ones, are generally generated in good to high yields and excellent enantioselectivities and can be readily transformed into useful derivatives.

4.
Shanghai Kou Qiang Yi Xue ; 33(3): 273-278, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39104343

ABSTRACT

PURPOSE: To explore the efficacy of denture occlusal plate combined with comprehensive physical therapy for temporomandibular joint disc displacement without reduction(ADDwoR). METHODS: Sixty patients of ADDwoR and dentition defect or severely worn teeth who visited the Department of Orthodontics and Prosthodontics of Hengshui People's Hospital from January 2019 to December 2020 were selected and randomly divided into denture occlusal plate group (group A) and denture occlusal plate + comprehensive physical therapy group (group B) according to the treatment methods. Maximum mouth opening (MMO) and visual analog pain score(VAS) among all patients were recorded before treatment and every three weeks during three months of treatment. Cone-beam CT(CBCT) was taken before and 3 months after treatment. The changes in clinical efficacy indicators before and after treatment and CBCT data between the two groups were analyzed. Statistical analysis was performed with SPSS 26.0 software package. RESULTS: The differences of VAS of group A and B were statistically significant from before treatment to three weeks after treatment(P<0.05), and group B decreases more. From 3 weeks after treatment, there was a significant difference of group B for MMO and VAS before treatment (P<0.05). From 9 weeks after treatment, there was a significant difference of group A for MMO before treatment (P<0.05), but there was no significant difference in MMO and VAS between group A and B(P>0.05). CBCT showed narrowed anterior joint space, widened posterior joint space, enlarged superior joint space, decreased horizontal angle of the condyle and increased slope of joint nodules (P<0.05). The difference between joint depth, anteroposterior diameter of the condyle, internal and external diameter was not significant (P>0.05). There was significant differences in anterior, superior, and posterior joint space, condylar level angle, and slope of joint nodules of group B compared with group A(P<0.05). CONCLUSIONS: Denture occlusal plate can effectively improve symptoms of ADDwoR, and denture occlusal plate combined with comprehensive physical therapy can quickly improve mouth opening and reduce pain in the joint area.


Subject(s)
Physical Therapy Modalities , Humans , Cone-Beam Computed Tomography/methods , Temporomandibular Joint Disc , Treatment Outcome , Temporomandibular Joint Disorders/therapy , Dentures , Male , Female , Pain Measurement
5.
Neurol Sci ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088158

ABSTRACT

OBJECTIVE: To investigate the efficacy of transcranial ultrasound stimulation (TUS) combined with Fastigial nucleus stimulation (FNS) on cerebral blood flow and limb function in patients in the acute phase of ischemic stroke. METHODS: A total of 90 patients in the acute phase of ischemic stroke were randomly divided into an FNS, TUS, and TUS + FNS group (30 patients each), and all patients also received conventional treatment. The FNS group was treated with FNS alone. The TUS group was treated with TUS alone. The TUS + FNS group was treated with both TUS and FNS. The three groups were treated once a day for 6 days a week. RESULTS: The simplified Fugl-Meyer Assessment (FMA) and Barthel index scores (BI), and the peak systolic blood flow velocity (Vs) and the mean blood flow velocity (Vm) of the anterior cerebral artery, middle cerebral artery, and posterior cerebral artery, were significantly higher in all three groups compared with before treatment (P < 0.05). The scores for the TUS group were higher than for the FNS group (P < 0.05), and the scores of the TUS + FNS group were higher than the TUS and FNS groups, respectively (P < 0.05). The total effective rate was 63.3%, 70.0%, and 90.0% in the FNS, TUS, and TUS + FNS groups, respectively, and the difference between the three groups was statistically significant (P < 0.05). CONCLUSION: The FNS and TUS treatments improved the function of and accelerated cerebral blood flow in patients with acute ischemic stroke to different degrees, and the combined use of both treatment types was overall more effective.

6.
Cell Death Dis ; 15(7): 533, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068164

ABSTRACT

Renal cell carcinoma (RCC) is considered a "metabolic disease" characterized by elevated glycolysis in patients with advanced RCC. Tyrosine kinase inhibitor (TKI) therapy is currently an important treatment option for advanced RCC, but drug resistance may develop in some patients. Combining TKI with targeted metabolic therapy may provide a more effective approach for patients with advanced RCC. An analysis of 14 RCC patients (including three needle biopsy samples with TKI resistance) revealed by sing-cell RNA sequencing (scRNA-seq) that glycolysis played a crucial role in poor prognosis and drug resistance in RCC. TCGA-KIRC and glycolysis gene set analysis identified DEPDC1 as a target associated with malignant progression and drug resistance in KIRC. Subsequent experiments demonstrated that DEPDC1 promoted malignant progression and glycolysis of RCC, and knockdown DEPDC1 could reverse TKI resistance in RCC cell lines. Bulk RNA sequencing (RNA-seq) and non-targeted metabolomics sequencing suggested that DEPDC1 may regulate RCC glycolysis via AKT/mTOR/HIF1α pathway, a finding supported by protein-level analysis. Clinical tissue samples from 98 RCC patients demonstrated that DEPDC1 was associated with poor prognosis and predicted RCC metastasis. In conclusion, this multi-omics analysis suggests that DEPDC1 could serve as a novel target for TKI combined with targeted metabolic therapy in advanced RCC patients with TKI resistance.


Subject(s)
Carcinoma, Renal Cell , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit , Kidney Neoplasms , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/drug therapy , Humans , Glycolysis/drug effects , TOR Serine-Threonine Kinases/metabolism , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Proto-Oncogene Proteins c-akt/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Cell Line, Tumor , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Signal Transduction , Mice , Animals , Male , Female , Mice, Nude , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic
7.
Biomed Mater ; 19(5)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39059433

ABSTRACT

To explore the feasibility and safety of biomaterials for posterior scleral reinforcement (PSR) in rabbits. Decellularization and genipin crosslink were applied to the fresh bovine pericardium and porcine endocranium, and then mechanical properties, suture retention strength, and stability were tested. PSR operation was performed on 24 rabbit eyes using treated biological materials. Ophthalmic examination was performed regularly before and after PSR operation (1 week, 1 month, 3 months, 6 months). To evaluate the effectiveness, A ultrasound, diopter, and optical coherence tomography were conducted. General condition, fundus photograph, and pathological examination were recorded to evaluate the safety. Compared with genipin crosslinked bovine pericardium (Gen-BP) (21.29 ± 13.29 Mpa), genipin crosslinked porcine endocranium (Gen-PE) (34.85 ± 3.67 Mpa,P< 0.01) showed a closer elastic modulus to that of genipin crosslinked human sclera. There were no complications or toxic reactions directly related to the materials. Capillary hyperplasia, inflammatory cell infiltration, and collagen fiber deposition were observed, and the content of type I collagen fibers increased after PSR. Overall, the choroidal thickness of treated eyes was significantly thickened at different time points after PSR, which were 96.84 ± 21.08 µm, 96.72 ± 22.00 µm, 90.90 ± 16.57 µm, 97.28 ± 14.74 µm, respectively. The Gen-PE group showed changes that were almost consistent with the overall data. Gen-BP and Gen-PE are safe biological materials for PSR. The Gen-PE group demonstrated more significant advantages over the Gen-BP group in terms of material properties.


Subject(s)
Biocompatible Materials , Feasibility Studies , Iridoids , Materials Testing , Sclera , Animals , Rabbits , Biocompatible Materials/chemistry , Cattle , Swine , Iridoids/chemistry , Sutures , Pericardium , Tomography, Optical Coherence , Humans , Cross-Linking Reagents/chemistry , Elastic Modulus
8.
Sensors (Basel) ; 24(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39001043

ABSTRACT

The properties of nanopipettes largely rely on the materials introduced onto their inner walls, which allow for a vast extension of their sensing capabilities. The challenge of simultaneously enhancing the sensitivity and selectivity of nanopipettes for pH sensing remains, hindering their practical applications. Herein, we report insulin-modified nanopipettes with excellent pH response performances, which were prepared by introducing insulin onto their inner walls via a two-step reaction involving silanization and amidation. The pH response intensity based on ion current rectification was significantly enhanced by approximately 4.29 times when utilizing insulin-modified nanopipettes compared with bare ones, demonstrating a linear response within the pH range of 2.50 to 7.80. In addition, insulin-modified nanopipettes featured good reversibility and selectivity. The modification processes were monitored using the I-V curves, and the relevant mechanisms were discussed. The effects of solution pH and insulin concentration on the modification results were investigated to achieve optimal insulin introduction. This study showed that the pH response behavior of nanopipettes can be greatly improved by introducing versatile molecules onto the inner walls, thereby contributing to the development and utilization of pH-responsive nanopipettes.


Subject(s)
Insulin , Hydrogen-Ion Concentration , Insulin/chemistry , Biosensing Techniques/methods , Ions/chemistry
9.
Transl Oncol ; 47: 101950, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964032

ABSTRACT

BACKGROUND: Pulmonary sarcomatoid carcinoma (PSC) is a highly invasive pulmonary malignancy with an extremely poor prognosis. The results of previous studies suggest that ubiquitin-specific peptidase 9X (USP9X) contributes to the progression of numerous types of cancer. Nevertheless, there is little knowledge about the molecular mechanisms and functions of USP9X in the metastasis of PSC. METHODS: Immunohistochemistry and western blotting were used to detect USP9X expression levels in PSC tissues and cells. Wound healing, transwell, enzyme-linked immunosorbent assay (ELISA), tube formation, and aortic ring assays were used to examine the function and mechanism of USP9X in the metastasis of PSC. RESULTS: Expression of USP9X was markedly decreased and significantly correlated with metastasis and prognosis of patients with PSC. Then we revealed that USP9X protein levels were negatively associated with the levels of epithelial-mesenchymal transition (EMT) markers and the migration of PSC cells. It was confirmed that USP9X in PSC cells reduced VEGF secretion and inhibited tubule formation of human umbilical vein endothelial cells (HUVEC) in vitro. USP9X was detected to downregulate MMP9. Meanwhile, MMP9 was positively related to EMT, angiogenesis and was negatively related to immune infiltration in the public databases. USP9X was significantly negatively associated with the expression of MMP9, EMT markers, CD31, and positively associated with CD4, and CD8 in PSC tissues. CONCLUSION: The present study reveals the vital role of USP9X in regulating EMT, angiogenesis and immune infiltration and inhibiting metastasis of PSC via downregulating MMP9, which provides a new effective therapeutic target for PSC.

10.
Article in English | MEDLINE | ID: mdl-39041626

ABSTRACT

SIGNIFICANCE: Ferroptosis, a form of regulated cell death characterized by a large amount of lipid peroxidation-mediated membrane damage, joins the evolution of multisystem diseases. For instance, neurodegenerative diseases, chronic obstructive pulmonary disease and acute respiratory distress syndrome, osteoporosis and osteoarthritis, and so on. Since being identified as the third gasotransmitter in living organisms, the intricate role of hydrogen sulfide (H2S) in ferroptosis has emerged at the forefront of research. RECENT ADVANCES: The discovery of novel targets in the relevant metabolic pathways, including transferrin receptor 1, cystine/glutamate antiporter, and others, coupled with the exploration of new signaling pathways, particularly the p53 signaling pathway and the nitric oxide / nuclear factor erythroid 2-related factor 2 signaling pathway, and so on. Many diseases such as emphysema and airway inflammation, myocardial diseases, endothelial dysfunction in aging arteries, and traumatic brain injury have recently been found to be alleviated directly by H2S inhibition of ferroptosis. Safe, effective, and tolerable novel H2S donors have been developed and have shown promising results in phase I clinical trials. CRITICAL ISSUES: Complicated crosstalk between ferroptosis signaling pathway and oncogenic factors results in the risk of cancer when inhibiting ferroptosis. Notably, targeted delivery of H2S is still a challenging task. FUTURE DIRECTIONS: Discovering more reliable and stable novel H2S donors and achieving their targeted delivery will enable further clinical trials for diseases associated with ferroptosis inhibition by H2S, determining their safety, efficacy, and tolerance.

11.
Bioinformatics ; 40(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38995731

ABSTRACT

MOTIVATION: Sidechain rotamer libraries of the common amino acids of a protein are useful for folded protein structure determination and for generating ensembles of intrinsically disordered proteins (IDPs). However, much of protein function is modulated beyond the translated sequence through the introduction of post-translational modifications (PTMs). RESULTS: In this work, we have provided a curated set of side chain rotamers for the most common PTMs derived from the RCSB PDB database, including phosphorylated, methylated, and acetylated sidechains. Our rotamer libraries improve upon existing methods such as SIDEpro, Rosetta, and AlphaFold3 in predicting the experimental structures for PTMs in folded proteins. In addition, we showcase our PTM libraries in full use by generating ensembles with the Monte Carlo Side Chain Entropy (MCSCE) for folded proteins, and combining MCSCE with the Local Disordered Region Sampling algorithms within IDPConformerGenerator for proteins with intrinsically disordered regions. AVAILABILITY AND IMPLEMENTATION: The codes for dihedral angle computations and library creation are available at https://github.com/THGLab/ptm_sc.git.


Subject(s)
Databases, Protein , Intrinsically Disordered Proteins , Protein Processing, Post-Translational , Proteins , Proteins/chemistry , Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Algorithms , Protein Folding , Monte Carlo Method , Protein Conformation , Amino Acids/chemistry , Amino Acids/metabolism , Software
12.
Hum Brain Mapp ; 45(11): e26790, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39037119

ABSTRACT

Brain glymphatic dysfunction is critical in neurodegenerative processes. While animal studies have provided substantial insights, understandings in humans remains limited. Recent attention has focused on the non-invasive evaluation of brain glymphatic function. However, its association with brain parenchymal lesions in large-scale population remains under-investigated. In this cross-sectional analysis of 1030 participants (57.14 ± 9.34 years, 37.18% males) from the Shunyi cohort, we developed an automated pipeline to calculate diffusion-weighted image analysis along the perivascular space (ALPS), with a lower ALPS value indicating worse glymphatic function. The automated ALPS showed high consistency with the manual calculation of this index (ICC = 0.81, 95% CI: 0.662-0.898). We found that those with older age and male sex had lower automated ALPS values (ß = -0.051, SE = 0.004, p < .001, per 10 years, and ß = -0.036, SE = 0.008, p < .001, respectively). White matter hyperintensity (ß = -2.458, SE = 0.175, p < .001) and presence of lacunes (OR = 0.004, 95% CI < 0.002-0.016, p < .001) were significantly correlated with decreased ALPS. The brain parenchymal and hippocampal fractions were significantly associated with decreased ALPS (ß = 0.067, SE = 0.007, p < .001 and ß = 0.040, SE = 0.014, p = .006, respectively) independent of white matter hyperintensity. Our research implies that the automated ALPS index is potentially a valuable imaging marker for the glymphatic system, deepening our understanding of glymphatic dysfunction.


Subject(s)
Diffusion Magnetic Resonance Imaging , Glymphatic System , Humans , Male , Female , Glymphatic System/diagnostic imaging , Glymphatic System/pathology , Glymphatic System/physiopathology , Middle Aged , Cross-Sectional Studies , Aged , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , White Matter/diagnostic imaging , White Matter/pathology , Image Processing, Computer-Assisted/methods , Adult , Cohort Studies
13.
World J Diabetes ; 15(6): 1340-1352, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38983805

ABSTRACT

BACKGROUND: The mechanism of improvement of type 2 diabetes after duodenal-jejunal bypass (DJB) surgery is not clear. AIM: To study the morphological and functional changes in adipose tissue after DJB and explore the potential mechanisms contributing to postoperative insulin sensitivity improvement of adipose tissue in a diabetic male rat model. METHODS: DJB and sham surgery was performed in a-high-fat-diet/streptozotocin-induced diabetic rat model. All adipose tissue was weighed and observed under microscope. Use inguinal fat to represent subcutaneous adipose tissue (SAT) and mesangial fat to represent visceral adipose tissue. RNA-sequencing was utilized to evaluate gene expression alterations adipocytes. The hematoxylin and eosin staining, reverse transcription-quantitative polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay were used to study the changes. Insulin resistance was evaluated by immunofluorescence. RESULTS: After DJB, whole body blood glucose metabolism and insulin sensitivity in adipose tissue improved. Fat cell volume in both visceral adipose tissue (VAT) and SAT increased. Compared to SAT, VAT showed more significantly functional alterations after DJB and KEGG analysis indicated growth hormone (GH) pathway and downstream adiponectin secretion were involved in metabolic regulation. The circulating GH and adiponectin levels and GH receptor and adiponectin levels in VAT increased. Cytological experiment showed that GH stimulated adiponectin secretion and improve insulin sensitivity. CONCLUSION: GH improves insulin resistance in VAT in male diabetic rats after receiving DJB, possibly by increasing adiponectin secretion.

14.
Cell Rep ; 43(7): 114419, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38985672

ABSTRACT

The compaction of chromatin into mitotic chromosomes is essential for faithful transmission of the genome during cell division. In eukaryotes, chromosome morphogenesis is regulated by the condensin complex, though the exact mechanism used to target condensin to chromatin and initiate condensation is not understood. Here, we reveal that condensin contains an intrinsically disordered region (IDR) that modulates its association with chromatin in early mitosis and exhibits phase separation. We describe DNA-binding motifs within the IDR that, upon deletion, inflict striking defects in chromosome condensation and segregation, ill-timed condensin turnover on chromatin, and cell death. Importantly, we demonstrate that the condensin IDR can impart cell cycle regulatory functions when transferred to other subunits within the complex, indicating its autonomous nature. Collectively, our study unveils the molecular basis for the initiation of chromosome condensation in early mitosis and how this process ultimately promotes genomic stability and faultless cell division.


Subject(s)
Adenosine Triphosphatases , DNA-Binding Proteins , Mitosis , Multiprotein Complexes , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Multiprotein Complexes/metabolism , Adenosine Triphosphatases/metabolism , Chromatin/metabolism , DNA/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Chromosomes/metabolism , Protein Binding , Chromosome Segregation , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
15.
J Ovarian Res ; 17(1): 126, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890751

ABSTRACT

Ovarian cancer is a common malignant tumor in women, with a high mortality rate ranking first among gynecological tumors. Currently, there is insufficient understanding of the causes, pathogenesis, recurrence and metastasis of ovarian cancer, and early diagnosis and treatment still face great challenges. The sensitivity and specificity of existing ovarian cancer screening methods are still unsatisfactory. Centromere protein O (CENP-O) is a recently discovered structural centromere protein that is involved in cell death and is essential for spindle assembly, chromosome separation, and checkpoint signaling during mitosis. The abnormal high expression of CENP-O was detected in various tumors such as bladder cancer and gastric cancer, and it participates in the regulation of tumor cell proliferation. In this study, we detect the expression abundance of CENP-O mRNA in different ovarian cancer cells ( ES-2, A2780, Caov-3, OVCAR-3 and SK-OV-3). The biological function changes of cell proliferation and apoptosis were detected and the role of CENP-O in ovarian cancer cell proliferation and apoptosis was explored by knocking down the expression of CENP-O gene. The results showed that CENP-O gene was significantly expressed in 5 types of ovarian cancer cell lines. After knocking down the CENP-O gene, the proliferation and cloning ability of ovarian cancer cells decreased, and the apoptosis increased. This study indicates that CENP-O has the potential to be a molecular therapeutic target, and downregulating the expression of CENP-O gene can break the unlimited proliferation ability of cancer cells and promote their apoptosis, providing a foundation and new ideas for subsequent molecular mechanism research and targeted therapy.


Subject(s)
Apoptosis , Cell Proliferation , Chromosomal Proteins, Non-Histone , Ovarian Neoplasms , Female , Humans , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Gene Expression Regulation, Neoplastic , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology
16.
Sci Rep ; 14(1): 14630, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918432

ABSTRACT

In this study, we analyzed the factors influencing the development of delayed encephalopathy in patients with acute carbon monoxide poisoning (ACOP) (DEACMP) following conventional treatment such as hyperbaric oxygen therapy (HBOT). Between January 2012 and January 2022, we retrospectively analyzed 775 patients with ACOP, who were admitted to the Second Department of Rehabilitation Medicine and received HBOT in the Second Hospital of Hebei Medical University. These patients were divided into the non-DEACMP and DEACMP groups based on their follow-up; we then compared the general data, clinical characteristics, admission examination, and treatment between the two groups to identify risk factors for the development of DEACMP. The DEACMP group comprised of 168 cases, while the non-DEACMP group consisted of 607 cases. Univariate analysis showed that there were 20 possible prognostic factors in the non-DEACMP and DEACMP groups. The results of multivariable regression analyses suggested that the occurrence of DEACMP was significantly correlated with advanced age, the combination of multiple medical histories, the duration of CO exposure, the duration of coma, poisoning degree, the Interval between ACOP and the first HBOT, the total number of HBOTs, and the combination with rehabilitation treatment. DEACMP patients who are older, have more comorbidities, prolonged CO exposure, prolonged coma, severe intoxication, long intervals between ACOP and the first HBOT, fewer HBOT treatments, and who are not treated with a combination of rehabilitative therapies have a poor prognosis.


Subject(s)
Brain Diseases , Carbon Monoxide Poisoning , Hyperbaric Oxygenation , Humans , Carbon Monoxide Poisoning/complications , Carbon Monoxide Poisoning/therapy , Male , Female , Middle Aged , Retrospective Studies , Adult , Risk Factors , Brain Diseases/etiology , Aged , Prognosis
17.
PLoS One ; 19(6): e0300566, 2024.
Article in English | MEDLINE | ID: mdl-38829842

ABSTRACT

BACKGROUND: Many studies have demonstrated the beneficial health effects of caffeine. However, its association with obesity prevalence and caffeine intake remains controversial. Notably, the impact of caffeine on children and adolescents needs to be more adequately represented in large-scale epidemiological investigations. OBJECTIVE: This study examines the association between caffeine intake and obesity prevalence in children and adolescents aged 2 to 19. METHODS: This study used the database from the National Health and Nutrition Examination Survey (NHANES, 2011-2020 March) to perform a cross-sectional study. A total of 10,001 classified children and adolescents were included in this analysis. All data were survey-weighted, and corresponding logistic regression models were performed to examine the associations between caffeine intake and the prevalence of obesity. RESULTS: In a fully adjusted model, a per-quartile increase in caffeine intake was associated with a 0.05% increased prevalence of obesity. In the subgroup analysis, the multivariate-adjusted ORs (95% CIs) of the prevalence of obesity for per-quartile 1.3497 (1.2014, 1.5163) increments in caffeine intake were 1.5961 (1.3127, 1.9406) for boys and 1.4418 (1.1861, 1.7525) for girls, 1.5807 (1.3131, 1.9027) for white race and 1.3181 (1.0613, 1.6370), 1.0500 (0.6676, 1.6515) for the age of 2-5, 1.4996 (1.1997, 1.8745) for the age of 6-12, and 1.2321 (0.9924, 1597) for the age of 13-19. CONCLUSION: The study suggested that higher caffeine intake may have a protective effect against obesity in specific subgroups, particularly among no overweight individuals. However, the association was not significant in other groups, indicating the need for a nuanced understanding of caffeine's impact on obesity in diverse populations.


Subject(s)
Caffeine , Nutrition Surveys , Humans , Caffeine/administration & dosage , Child , Female , Male , Adolescent , Cross-Sectional Studies , Prevalence , Child, Preschool , Young Adult , Obesity/epidemiology , Pediatric Obesity/epidemiology , United States/epidemiology
18.
Anal Chim Acta ; 1314: 342801, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38876517

ABSTRACT

BACKGROUND: Most of the investigations on distinct crystal structures of catalysts are individually focused on the difference of surface functional groups or adsorption properties, but rarely explore the changes of active sites to affect the electrocatalytic performance. Catalysts with diverse crystal structures had been applied to modified electrodes in different electrocatalytic reactions. However, there is currently a lack of an essential understanding for the role of real active sites in catalysts with crystalline structures in electroanalysis, which is crucial for designing highly sensitive sensing interfaces. RESULTS: Herein, cobalt molybdate with divergent crystal structures (α-CoMoO4 and ß-CoMoO4) were synthesized by adjusting the calcination temperature, indicating that α-CoMoO4 (800 °C) (60.00 µA µM-1) had the highest catalytic ability than ß-CoMoO4 (700 °C) (38.68 µA µM-1) and α-CoMoO4 (900 °C) (29.55 µA µM-1) for the catalysis of Pb(II). It was proved that the proportion of Co(II) and Mo(IV) as electron-rich sites in α-CoMoO4 (800 °C) were higher than ß-CoMoO4 (700 °C) and α-CoMoO4 (900 °C), possessing more electrons to participate in the valence cycles of Co(II)/Co(III) and Mo(IV)/Mo(VI) to boost the catalytic reduction of Pb(II). Specifically, Co(II) transferred a part of electrons to Mo(VI), promoting the formation of Mo(IV). Co(II) and Mo(IV), as the electron-rich sites, providing electrons to Pb(II), further accelerating the conversion of Pb(II) into Pb(0). SIGNIFICANCE: In the process of detecting Pb(II), the CoMoO4 structures under different temperatures have distinct content of electron-rich sites Co(II) and Mo(IV). α-CoMoO4 (800 °C), with the highest content are benefited to detect Pb(II). This work is conducive to understanding the effect of the changes of active sites resulting from crystal transformation on the electrocatalytic performance, and provides a way to construct sensitive electrochemical interfaces of distinct active sites.

19.
Elife ; 132024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896455

ABSTRACT

Microbes strongly affect invasive plant growth. However, how phyllosphere and rhizosphere soil microbes distinctively affect seedling mortality and growth of invaders across ontogeny under varying soil nutrient levels remains unclear. In this study, we used the invader Ageratina adenophora to evaluate these effects. We found that higher proportions of potential pathogens were detected in core microbial taxa in leaf litter than rhizosphere soil and thus leaf inoculation had more adverse effects on seed germination and seedling survival than soil inoculation. Microbial inoculation at different growth stages altered the microbial community and functions of seedlings, and earlier inoculation had a more adverse effect on seedling survival and growth. The soil nutrient level did not affect microbe-mediated seedling growth and the relative abundance of the microbial community and functions involved in seedling growth. The effects of some microbial genera on seedling survival are distinct from those on growth. Moreover, the A. adenophora seedling-killing effects of fungal strains isolated from dead seedlings by non-sterile leaf inoculation exhibited significant phylogenetic signals, by which strains of Allophoma and Alternaria generally caused high seedling mortality. Our study stresses the essential role of A. adenophora litter microbes in population establishment by regulating seedling density and growth.


Subject(s)
Ageratina , Plant Leaves , Rhizosphere , Seedlings , Soil Microbiology , Ageratina/microbiology , Seedlings/microbiology , Seedlings/growth & development , Plant Leaves/microbiology , Plant Leaves/growth & development , Microbiota , Introduced Species , Germination
20.
J Immunother Cancer ; 12(6)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908856

ABSTRACT

BACKGROUND: Tertiary lymphoid structures (TLSs) serve as organized lymphoid aggregates that influence immune responses within the tumor microenvironment. This study aims to investigate the characteristics and clinical significance of TLSs and tumor-infiltrating lymphocytes (TILs) in clear cell renal cell carcinoma (ccRCC). METHODS: TLSs and TILs were analyzed comprehensively in 754 ccRCC patients from 6 academic centers and 532 patients from The Cancer Genome Atlas. Integrated analysis was performed based on single-cell RNA-sequencing datasets from 21 ccRCC patients to investigate TLS heterogeneity in ccRCC. Immunohistochemistry and multiplex immunofluorescence were applied. Cox regression and Kaplan-Meier analyses were used to reveal the prognostic significance. RESULTS: The study demonstrated the existence of TLSs and TILs heterogeneities in the ccRCC microenvironment. TLSs were identified in 16% of the tumor tissues in 113 patients. High density (>0.6/mm2) and maturation of TLSs predicted good overall survival (OS) (p<0.01) in ccRCC patients. However, high infiltration (>151) of scattered TILs was an independent risk factor of poor ccRCC prognosis (HR=14.818, p<0.001). The presence of TLSs was correlated with improved progression-free survival (p=0.002) and responsiveness to therapy (p<0.001). Interestingly, the combination of age and TLSs abundance had an impact on OS (p<0.001). Higher senescence scores were detected in individuals with immature TLSs (p=0.003). CONCLUSIONS: The study revealed the contradictory features of intratumoral TLSs and TILs in the ccRCC microenvironment and their impact on clinical prognosis, suggesting that abundant and mature intratumoral TLSs were associated with decreased risks of postoperative ccRCC relapse and death as well as favorable therapeutic response. Distinct spatial distributions of immune infiltration could reflect effective antitumor or protumor immunity in ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Lymphocytes, Tumor-Infiltrating , Tertiary Lymphoid Structures , Tumor Microenvironment , Humans , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/mortality , Tertiary Lymphoid Structures/immunology , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Female , Male , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Middle Aged , Prognosis , Cohort Studies , Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...