Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol ; 565(Pt 3): 783-99, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-15760942

ABSTRACT

alpha-Latrotoxin (alpha-LT), a potent excitatory neurotoxin, increases spontaneous, as well as action potential-evoked, quantal release at nerve terminals and increases hormone release from excitable endocrine cells. We have investigated the effects of alpha-LT on single human, mouse and canine beta-cells. In isolated and combined measurements, alpha-LT, at nanomolar concentrations, induces: (i) rises in cytosolic Ca(2+), into the micromolar range, that are dependent on extracellular Ca(2+); (ii) large conductance non-selective cation channels; and (iii) Ca(2+)-dependent insulin granule exocytosis, measured as increases in membrane capacitance and quantal release of preloaded serotonin. Furthermore, at picomolar concentrations, alpha-LT potentiates depolarization-induced exocytosis often without evidence of inducing channel activity or increasing cytosolic Ca(2+). These results strongly support the hypothesis that alpha-LT, after binding to specific receptors, has at least two complementary modes of action on excitable cells. (i) alpha-LT inserts into the plasma membrane to form Ca(2+) permeable channels and promote Ca(2+) entry thereby triggering Ca(2+)-dependent exocytosis in unstimulated cells. (ii) At lower concentrations, where its channel forming activity is hardly evident, alpha-LT augments depolarization-evoked exocytosis probably by second messenger-induced enhancement of the efficiency of the vesicle recruitment or vesicle fusion machinery. We suggest that both modes of action enhance exocytosis from a newly described highly Ca(2+)-sensitive pool of insulin granules activated by global cytosolic Ca(2+) concentrations in the range of approximately 1 microm.


Subject(s)
Exocytosis/drug effects , Islets of Langerhans/drug effects , Islets of Langerhans/physiology , Spider Venoms/pharmacology , Animals , Calcium/metabolism , Calcium Channels/physiology , Cytosol/metabolism , Dogs , Exocytosis/physiology , Humans , Ion Channel Gating/drug effects , Ion Channel Gating/physiology , Membrane Potentials/drug effects , Mice , Patch-Clamp Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...