Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(8): 5524-5535, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37036171

ABSTRACT

Heterobifunctional degraders, known as proteolysis targeting chimeras (PROTACs), theoretically possess a catalytic mode-of-action, yet few studies have either confirmed or exploited this potential advantage of event-driven pharmacology. Degraders of oncogenic EML4-ALK fusions were developed by conjugating ALK inhibitors to cereblon ligands. Simultaneous optimization of pharmacology and compound properties using ternary complex modeling and physicochemical considerations yielded multiple catalytic degraders that were more resilient to clinically relevant ATP-binding site mutations than kinase inhibitor drugs. Our strategy culminated in the design of the orally bioavailable derivative CPD-1224 that avoided hemolysis (a feature of detergent-like PROTACs), degraded the otherwise recalcitrant mutant L1196M/G1202R in vivo, and commensurately slowed tumor growth, while the third generation ALK inhibitor drug lorlatinib had no effect. These results validate our original therapeutic hypothesis by exemplifying opportunities for catalytic degraders to proactively address binding site resistant mutations in cancer.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Humans , Anaplastic Lymphoma Kinase , Antineoplastic Agents/pharmacology , Receptor Protein-Tyrosine Kinases , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Mutation , Drug Resistance, Neoplasm , Oncogene Proteins, Fusion/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...