Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mar Biol ; 95: 1-26, 2023.
Article in English | MEDLINE | ID: mdl-37923537

ABSTRACT

Bycatch and discards are a significant issue for global fisheries, with discards considered unnecessary mortality and wasted fishing. Discards have declined due to more selective gear and changes in regulations, but data on discard rates and species remains challenging to collect. Addressing discards is crucial to minimize food waste and increase seafood production. We provide an up-to-date overview of research on wasted fishing through bycatch and discards since 2012, including pots/traps, trawls, gillnets, and lines. By highlighting the challenges of collecting data on discard rates, species, and reasons, we emphasize the need for an adaptive approach to monitoring and reducing discards. Our review provides an important update on the current state of research on wasted fishing and highlights ongoing knowledge gaps in this area, indicating a need for continued efforts towards sustainable fisheries management.


Subject(s)
Food , Refuse Disposal , Conservation of Natural Resources , Fisheries , Hunting , Animals , Humans
2.
J Invertebr Pathol ; 201: 107987, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37634623

ABSTRACT

A reo-like virus, CsRV1, is found in blue crabs, Callinectes sapidus, from every North American location assessed, including Chesapeake Bay and the Atlantic and Gulf coasts, USA and associated with blue crabs in softshell production. CsRV1-associated crab mortality is prevalent in captive crabs, but it is still unknown how CsRV1 is transmitted. The purpose of this study was to examine the role that conspecific predation or scavenging may play in per os transmission in single exposure and repeated exposure experiments. For viruses without cell culture propagation, repeated exposure experiments have the challenge of presenting the virus consistently during the experiment and across time replicates. In a single-exposure experiment, none of the crabs fed muscle tissue of crabs carrying intense infections of CsRV1 developed CsRV1 infections. In a repeated-exposure trial, using infected muscle tissue prepared in alginate blocks, CsRV1 was detected in 11% of the crabs fed infected tissue but was not significantly different from the control group fed alginate lacking CsRV1. For repeated per os exposure experiments, the study demonstrated the utility of using alginate to present the same homogenous sample of virus, both injected and per os, over time for oral challenge experiments. Conspecific predation and scavenging could be a transmission route, but future work into this and other possible routes of transmission for CsRV1 is important to better understand the role this virus plays in wild crab populations and the soft-shell crab industry.


Subject(s)
Brachyura , Animals , Alginates
3.
J Invertebr Pathol ; 196: 107866, 2023 02.
Article in English | MEDLINE | ID: mdl-36436573

ABSTRACT

During a survey for pathogens and commensals of blue crabs in commercial soft shell shedding facilities in Louisiana, we discovered an occurrence of microsporidiosis in two of forty examined crabs. Judging from spore shape and size, tissue tropism and external signs of muscle pathology, the causative agent of infections was identified as Ameson michaelis, a muscle-infecting species that has been repeatedly detected in populations of Callinectes sapidus in Louisiana since 1965. However, retrospective ultrastructural examination revealed that in one of Ameson-infected crabs, infection was caused by a parasite with ultrastructural characters not completely compliant with the ones of A. michaelis. The major difference was the absence of microtubule-like appendages attached to the exospore, typical of A. michaelis and other Ameson spp. SSUrDNA-inferred pairwise evolutionary distances between the novel species and other Ameson spp. ranged from 0.006 to 0.051; it was 0.039 in the case of A. michaelis. Hence, we describe here a new species in the genus Ameson, and name it after Prof. Earl Weidner, our colleague and friend, an outstanding microsporidiologist and the author of pioneer papers on the ultrastructure and physiology of A. michaelis.


Subject(s)
Brachyura , Microsporidia , Animals , Brachyura/parasitology , Retrospective Studies , Louisiana , Muscles
4.
Dis Aquat Organ ; 114(1): 1-10, 2015 May 11.
Article in English | MEDLINE | ID: mdl-25958802

ABSTRACT

Louisiana has one of the largest blue crab (Callinectes sapidus) fisheries in the USA, but little is known about blue crab diseases, parasites, and symbionts in this area. In 2013-2014, large juvenile and adult blue crabs were collected at 4 diverse sites to determine the prevalence of the protozoan symbionts associated with black gill disease (Lagenophrys callinectes), buckshot crabs (Urosporidium crescens), and bitter crab disease (Hematodinium perezi). A high aggregate prevalence of L. callinectes (93.2%) was identified across all seasons at all 4 collection sites regardless of salinity. A moderately low aggregate prevalence of U. crescens (22.4%) was identified across all seasons and sites. Prevalence of U. crescens depended on site salinity, with only 10% of infections detected at sites with <6.3 ppt salinity, and no infections detected at the low salinity site. While L. callinectes and U. crescens are commensal parasites of blue crabs, infections can result in unmarketable and unappealing meat. In the Louisiana fishery, H. perezi has been blamed circumstantially for adult mortalities in the low salinity nearshore fishing grounds. Despite this, H. perezi was not detected in any of the large crabs sampled, even from the low salinity sites. The prevalence data reported here for these 3 protozoans are the first to include blue crabs sampled seasonally at multiple locations along the Louisiana coast over the period of a year.


Subject(s)
Brachyura/parasitology , Eukaryota/physiology , Symbiosis/physiology , Animals , Host-Parasite Interactions , Louisiana , Salinity , Seawater/chemistry
5.
J Invertebr Pathol ; 127: 54-62, 2015 May.
Article in English | MEDLINE | ID: mdl-25769514

ABSTRACT

Prevalence of blue crab diseases and parasites has not been consistently monitored in the Gulf of Mexico. To establish current prevalence levels and to more fully understand population dynamics, commercial landing trends, and effects of future natural and anthropogenic disasters on animal health, we measured the prevalence of white spot syndrome virus (WSSV), Loxothylacus texanus, shell disease, and Vibrio spp. in blue crabs collected from Louisiana in 2013 and the beginning of 2014. We used PCR to detect WSSV and L. texanus infections, visual gross diagnosis for L. texanus externae and shell disease, and standard microbiological culture techniques and biochemical testing for Vibrio spp. We found no crabs infected with WSSV or L. texanus. Absence of L. texanus parasitization was expected based on the sampled salinities and the sampling focus on large crabs. Shell disease was present at a level of 54.8% and was most prevalent in the winter and summer and least prevalent in the spring. Vibrio spp. were found in the hemolymph of 22.3% of the crabs and prevalence varied by site, season, and sex. Additionally, three of 39 crabs tested were infected with reo-like virus.


Subject(s)
Brachyura/parasitology , Animals , Prevalence
6.
Dis Aquat Organ ; 112(3): 207-17, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25590771

ABSTRACT

Blue crab diseases, parasites, and commensals are not well studied in the Gulf of Mexico, and their prevalence rates have only been sporadically determined. Commercial soft shell shedding facilities in Louisiana experience high mortality rates of pre-molt crabs, and some of these deaths may be attributable to diseases or parasites. During the active shedding season in 2013, we determined the prevalence of shell disease, Vibrio spp., Lagenophrys callinectes, and Hematodinium perezi at 4 commercial shedding facilities along the Louisiana coast. We also detected Ameson michaelis and reo-like virus infections. Shell disease was moderately prevalent at rates above 50% and varied by shedding facility, collection month, and crab size. Vibrio spp. bacteria were prevalent in the hemolymph of 37% of the pre-molt crabs. Lagenophrys callinectes was highly prevalent in the pre-molt crabs, but because it is a commensal species, it may not cause high mortality rates. Hematodinium perezi was absent in all pre-molt crabs.


Subject(s)
Animal Shells/pathology , Brachyura/microbiology , Brachyura/parasitology , Animal Shells/microbiology , Animal Shells/parasitology , Animal Shells/virology , Animals , Aquaculture , Brachyura/virology , Female , Louisiana , Male
7.
Bull Environ Contam Toxicol ; 93(6): 649-53, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25173366

ABSTRACT

The Deepwater Horizon well released 4.4 million barrels of light crude oil offshore of Louisiana into one of the world's largest and most productive blue crab (Callinectes sapidus) fisheries. The objectives of this paper were to determine the toxicity of the dispersant Corexit(®) 9500A used in the 2010 oil spill on juvenile and larval blue crabs, and the long-term effects of sublethal acute exposure. Only the highest treatment levels of dispersant significantly increased mortality in larval and juvenile blue crabs (100 mg/L and 1,000 mg/L, respectively). This correlated to concentrations well above levels found in the Gulf of Mexico following the spill. Smaller and younger crabs showed higher mortality than older and larger crabs. This research indicates direct application of dispersants on crab larvae could cause acute mortality, but dilution through diffusion and natural weathering processes would minimize long-term effects.


Subject(s)
Brachyura/drug effects , Lipids/toxicity , Surface-Active Agents/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biodegradation, Environmental , Dose-Response Relationship, Drug , Larva/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...