Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chemosphere ; 362: 142521, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857630

ABSTRACT

As emerging persistent pollutants, microplastic (MPs) pollution attracted increasing attention worldwide since it is posing several environmental concerns. MPs interact with heavy metals in soil and may provoke damages on soil properties and ultimately impaired plants and human health. The present study aims to evaluate alfalfa plants (Medicago sativa) response after exposure to heavy metal polluted soils from mine site in the North of Tunisia in presence of environmental microplastic. For that, soils were sampled from two sites of Jebel Ressass mine in addition to a control soil. Plants were exposed to the three soils in presence of two increasing rates of microplastics D1 (1 mg/kg of soil) and D2 (100 mg/kg of soil) for 60 days. After harvest, agronomic parameters, chlorophyll content as well as heavy metal accumulation in plants were analyzed. Furthermore, oxidative status was evaluated in terms of malondialdehyde accumulation (MDA), catalase (CAT) activities and glutathion-S-transferase (GST). Overall, our finding highlights that MPs disrupted agronomic parameters and the photosynthetic activities of alfalfa plants. Additionally, our results revealed that the presence of MPs in polluted soils cause an increase on heavy metal accumulation in alfalfa shoots. Biochemical analyses demonstrated that the combined exposure to MPs and heavy metal induced oxidative stress in alfalfa plants by increasing CAT activity and MDA accumulation. The present investigation highlights the ecological risks of microplastics in terrestrial environment.

2.
Environ Pollut ; 341: 122945, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37984472

ABSTRACT

Polluted resources of potable water are daily used for different purposes in Lebanon. The optical microscopy is the traditional method used for the detection of Entamoeba spp. in water despite its weak sensitivity. We aimed to characterize domestic water at Nabatieh district, South Lebanon, and to develop a simple method for Entamoeba spp. detection. A total of 70 water samples were collected from houses and schools and analyzed for physical (pH, total dissolved solids and temperature), chemical (nitrate, phosphate and sulfate) and bacterial (total and fecal coliforms) parameters. The contamination by Entamoeba spp. was examined using microscopy, then a spectrophotometric wavelength scan was recorded for 50 samples in order to determine the common peak between positive samples. High phosphate levels were detected in all the samples, with important bacterial and parasitological contaminations. The spectrophotometric analyses showed a peak repetition at the wavelength of 696 nm in the spectrum of the majority of positive samples. The number of cysts was significantly correlated to optical densities at 696 nm (R = 0.9087; p-value<0.0001). The regression analysis showed that the OD696 could statistically predict the concentration (F (1,48) = 267.02, p-value <0.001). In conclusion, potable water parameters at Nabatieh district did not meet the national and international guidelines of safe drinking water, and the detection of Entamoeba spp. cysts in potable water can be performed using a rapid spectrophotometric analysis, by the determination of the optical density at 696 nm and the application of a specific equation.


Subject(s)
Cysts , Drinking Water , Entamoeba , Humans , Water Quality , Lebanon , Bacteria , Schools , Phosphates
3.
Sci Total Environ ; 887: 163950, 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37164086

ABSTRACT

Heavy metal pollution is causing harmful consequences on soil fertility, and earthworms are frequently employed as test organisms to evaluate the ecotoxicity of polluted soils. In this study, Eisenia andrei was exposed for 7 and 14 days to polymetallic contaminated soils collected from an industrial zone in the south-eastern Tunisia. Earthworm growth, heavy metal accumulation, genotoxicity, cytotoxicity, biochemical and transcriptional responses were determined. Results revealed a higher accumulation of heavy metals in earthworms after 14 than 7 days of soil exposure, a reduction in lysosomal membrane stability (LMS), besides an increase in micronuclei frequency (MN). Moreover, earthworm oxidative status was affected in terms of increases in malondialdehyde (MDA) and metallothionein (MTs) content, and enhancement of catalase (CAT) and glutathione-S-transferase (GST) activities. An inhibition of acetylcholinesterase (AChE) activity was also observed in treated earthworms, whereas transcriptional data demonstrated an up-regulation of cat, gst, mt, p21 and topoisomerase genes. Overall, these findings support the use of earthworms as suitable bioindicator species for pollution monitoring and assessment, advance our understanding of the interaction between heavy metals and earthworms, and provide valuable information about the harmful impact of biota exposure to naturally contaminated soils.


Subject(s)
Metals, Heavy , Oligochaeta , Animals , Oligochaeta/physiology , Transcriptome , Tunisia , Acetylcholinesterase , Metals, Heavy/analysis , Biomarkers , Soil/chemistry
4.
RSC Adv ; 13(17): 11346-11355, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37057272

ABSTRACT

This study is based on the evaluation of the adsorption process using Corbula trigona shell powder to remove lead from aqueous solution in a batch mode. Different analytical techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, and EDS-coupled scanning electron microscopy, were used to characterize the shell powder before and after lead treatment. Regarding the pollutant removal, a Plackett-Burman design (PBD) was first used to determine the influencing factors from the following experimental domain: solution pH (3-9), adsorbent mass (0.1-0.5 g), contact time (40 -240 min), initial pollutant concentration (10 -60 mg L-1), and adsorbent size (100 -200 µm). The respective contributions of the various factors listed above are 31.7%, 30.51%, 25.17%, 12.44%, and 0.18%. As a result, solution pH, adsorbent mass, contact time, and initial pollutant concentration were selected to optimize the lead removal process using the composite central plan. The optimal lead removal conditions were 99.028% by setting the solution pH to 4.5, initial lead concentration to 47 mg L-1, contact time to 125 min, and adsorbent mass to 0.2 g. In addition, it was found that the composite central plan could be a reliable statistical tool to model and determine the optimal conditions.

5.
Environ Sci Pollut Res Int ; 29(51): 77386-77400, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35672641

ABSTRACT

Industrial wastes and fertilizers can introduce excessive levels of nickel (Ni) into the environment, potentially causing threats to plants, animals, as well as human beings. However, the number of studies on the effects of Ni toxicity on nodules is fairly limited. To address this issue, the effects of increasing Ni concentration on alfalfa nodules were assessed at chemical, biochemical, and transcriptomic levels. For this purpose, plants were grown in soils supplied with Ni (control, 0 mg/kg; C1, 50 mg/kg; C2, 150 mg/kg; C3, 250 mg/kg; and C4, 500 mg/kg) for 90 days. Ni loads in leaves, roots, and nodules were monitored after the exposure period. A set of biochemical biomarkers of oxidative stress was determined in nodules including antioxidants and metal homeostasis as well as lipid peroxidation. Gene expression levels of the main targets involved in oxidative stress and metal homeostasis were assessed. Our data indicated a high concentration of Ni in leaves, roots, and nodules where values reached 25.64 ± 3.04 mg/kg, 83.23 ± 5.16 mg/kg, and 125.71 ± 4.53 mg/kg in dry weight, respectively. Moreover, a significant increase in nodule biomass was observed in plants exposed to C4 in comparison to control treatment and percentage increased by 63%. Then, lipid peroxidation increased with a rate of 95% in nodules exposed to C4. Enzymatic activities were enhanced remarkably, suggesting the occurrence of oxidative stress, with increased superoxide dismutase (SOD), glutathione reductase (GR), and ascorbate peroxidase (APX). Our results showed also a significant upregulation of SOD, GR and APX genes in nodules. Nodule homoglutathione (HGSH) levels increased with the different Ni concentrations, with a remarkable decrease of glutathione S-transferase (GST) activity and glutathione (GSH) content for the highest Ni concentration with 43% and 52% reduction, respectively. The phytochelatin (PC) and metallothionein (MT) concentrations increased in nodules, which implied the triggering of a cellular protection mechanism for coping with Ni toxicity. The results suggested that Ni promotes a drastic oxidative stress in alfalfa nodules, yet the expression of MT and PC to reduce Ni toxicity could be used as Ni stress bioindicators. Our findings provide new insights into the central role of alfalfa nodules in limiting the harmful effects of soil pollution. Therefore, nodules co-expressing antioxidant enzymes may have high phytoremediation potential.


Subject(s)
Antioxidants , Medicago sativa , Animals , Humans , Medicago sativa/metabolism , Antioxidants/metabolism , Nickel/metabolism , Phytochelatins/metabolism , Ascorbate Peroxidases/metabolism , Glutathione Reductase/metabolism , Fertilizers , Environmental Biomarkers , Industrial Waste , Oxidative Stress , Glutathione/metabolism , Superoxide Dismutase/metabolism , Soil/chemistry , Metallothionein/metabolism , Glutathione Transferase/metabolism
6.
Molecules ; 27(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35335135

ABSTRACT

Understanding ecological trajectories after mine site rehabilitation is essential to develop relevant protocols adapted for gold mining sites. This study describes the influence of a range of mine site rehabilitation and revegetation protocols on soil physicochemical parameters and microbial activities related to carbon, nitrogen and phosphorus cycles. We sampled soil from six rehabilitated mining sites in French Guiana with different plant cover (herbaceous, Cyperaceous, monoculture of Clitoria racemosa and Acacia mangium and association of C. racemosa and A. mangium). We measured the mineralization potential of organic matter by estimating the mineralization of carbon, nitrogen and phosphorus and the microbial catabolic diversity balance. The results showed an improvement in the quality of organic matter on revegetated sites with tree cover. On restored sites with fabaceous species, the microbial biomass is three times higher than non-restored sites, improving the rates of organic matter mineralization and restoring the catabolic diversity to the level of natural Guyanese soils. These results confirm that the establishment of fabaceous species under controlled conditions significantly improves the restoration of microbial communities in mining soils.


Subject(s)
Mining , Soil Microbiology , Guyana , Soil , Trees/metabolism
7.
Microorganisms ; 9(8)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34442781

ABSTRACT

Successive years of gold mining in French Guiana has resulted in soil degradation and deforestation leading to the pollution and erosion of mining plots. Due to erosion and topography, gold panning sites are submitted to hydromorphy during rainfall and groundwater increases. This original study focused on characterizing the impact of hydromorphic anaerobic periods on bio-geochemical cycles. We sampled soil from five rehabilitated sites in French Guiana, including sites with herbaceous vegetation and sites restored with fabaceous plants, Clitoria racemosa (Cli) mon-oculture, Acacia mangium (Aca) monoculture, Clitoria racemosa and Acacia mangium (Mix) bi-culture. We conducted mesocosm experiments where soil samples were incubated in anaerobic conditions for 35 days. To evaluate the effect of anaerobic conditions on biogeochemical cycles, we measured the following parameters related to iron-reducing bacteria and sulfate-reducing bacteria metabolism throughout the experiment: CO2 release, carbon dissolution, sulphide production and sulphate mobilization. We also monitored the solubilization of iron oxyhydroxides, manganese oxides, aluminum oxides and mercury in the culture medium. Iron-reducing bacteria (IRB) and sulfate-reducing bacteria (SRB) are described as the major players in the dynamics of iron, sulfur and metal elements including mercury in tropical environments. The results revealed two trends in these rehabilitated sites. In the Aca and Mix sites, bacterial iron-reducing activity coupled with manganese solubilization was detected with no mercury solubilization. In herbaceous sites, a low anaerobic activity coupled with sulphide production and mercury solubilization were detected. These results are the first that report the presence and activity of iron- and sulfate-reductive communities at rehabilitated mining sites and their interactions with the dynamics of metallic elements and mercury. These results report, however, the positive impact of ecological restoration of mining sites in French Guiana by reducing IRB and SRB activities, the potential mobility of mercury and its risk of transfer and methylation.

8.
Environ Sci Pollut Res Int ; 28(40): 56795-56807, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34076815

ABSTRACT

The extensive development of agriculture in urban and peri-urban wastelands polluted with several trace elements (TE) poses risks to human health through contaminated food products. The objective was to explore the accumulation of TE in the various parts of vegetable crop plants (tomato, French bean, radish, potato, spinach, and leek) intercropped with phytostabilizing plant species (ryegrass and white clover, respectively). Field studies were conducted in a multicontaminated French urban wasteland with Cd, Cu, Pb and Zn, and an alkaline soil pH. Analyses of the respective non-edible parts of monocultured vegetable crops showed accumulation of all TE, mostly Zn, then Pb and Cu, and finally Cd. The corresponding TE accumulation factors (soil to plant) were all below 0.25. In the edible parts, average concentrations for TE were above the limit values, according to European and Chinese standards. TE contents in the phytostabilizing species chosen were in the same orders of magnitude and the same ranking as described for vegetable crops and most accumulation was in the roots. Unexpectedly, the presence of the phytostabilizing plants had a very strong positive impact on the soil to plant accumulation factor. Moreover, the edible plant parts were poorly impacted by the co-cropping with phytostabilizing plants.


Subject(s)
Metals, Heavy , Soil Pollutants , Trace Elements , Crops, Agricultural , Humans , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis , Trace Elements/analysis , Vegetables
9.
Chemosphere ; 249: 126121, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32065994

ABSTRACT

Metal accumulation in soil could lead to severe damage to plants, animals, and humans. The present work aims to evaluate the effects of nickel (Ni) exposure on Medicago sativa at physiological, biochemical, and transcriptomic levels. Plants were exposed to five increasing concentrations of Ni (0, 50, 150, 250, and 500 mg/kg) for 60 days. Agronomic parameters (fresh and dry matter) and chlorophyll content (Chl) were determined in an alfalfa plant. Chemical analyses were conducted, involving the determination of Ni loads in plants (roots and shoots). Moreover, malondialdehyde accumulation (MDA), glutathione-S-transferase (GST), and peroxidase activities, termed as oxidative stress biomarkers, were measured. The gene expression levels of Prx1C, GST, and phytochelatins (PCs) were determined at different nickel concentrations. Our results showed that Ni concentration in plants increased significantly along with Ni concentration in the soil. Regarding oxidative stress biomarkers, Ni contamination caused an increase in peroxidase and GST activities, with a remarkable accumulation of MDA, especially for the highest Ni concentration (500 mg/kg of Ni). Our data showed also a significant upregulation of Prx1C and GST genes in shoots and roots. The PCs' gene expression was significantly enhanced in response to the different nickel concentrations, suggesting their important role in Ni detoxification in alfalfa plants. Our data provided evidence about the clear toxicity of Ni, an often-underestimated trace element.


Subject(s)
Medicago sativa/physiology , Nickel/toxicity , Soil Pollutants/toxicity , Animals , Chlorophyll/metabolism , Malondialdehyde/metabolism , Medicago sativa/drug effects , Oxidation-Reduction , Oxidative Stress/drug effects , Peroxidase/metabolism , Peroxidases/metabolism , Phytochelatins/metabolism , Plant Roots/metabolism , Soil/chemistry , Soil Pollutants/metabolism , Transcriptome/drug effects
10.
Sci Total Environ ; 647: 1245-1255, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30180333

ABSTRACT

Treated wastewater (TWW) reuse for irrigation has become an excellent way to palliate water scarcity in Mediterranean arid regions. However, the toxicological effects of these effluents on the soil's organisms, especially earthworms, have not been well studied as yet. In this paper, earthworms Eisenia andrei were exposed for 7 days and 14 days to five agricultural soils irrigated with TWW for different periods: 1 year, 8 years, and 20 years. In addition, they were also exposed to soil from one reference site sampled from the Ouardenin perimeter in the Monastir Governorate in Tunisia. The effect on earthworms was assessed at the biochemical level by evaluating for catalase (CAT), glutathione-S-transferase (GST), malondialdehyde accumulation (MDA) and acetylcholinesterase inhibition (AChE). On the other hand, genotoxicity and transcriptomic responses were evaluated using micronuclei test (MNT) and gene expression level of CAT and GST. Moreover, metals uptake by earthworms was analyzed. Results showed that CAT and GST activity in the earthworm increased significantly when they were exposed to soils irrigated with TWW for 1, 8 and 20 years. Furthermore, MDA concentration also increased significantly with the increase in exposure period. However, AChE activity decreased and MNi frequency increased in earthworms after 7 and 14 days of exposure to soils irrigated with TWW for more than a year. The gene expression level of CAT and GST showed a significant variability, thus data are discussed in relation to the studied biomarkers (CAT and GST). These data provide new insights into the effect of toxicity of TWW on the soil's macro fauna, which is strongly affected by the trace elements and other organic compounds accumulated in soils after 20 years of TWW irrigation.


Subject(s)
Agricultural Irrigation/methods , Oligochaeta/physiology , Soil Pollutants/toxicity , Waste Disposal, Fluid/methods , Animals , Soil , Soil Pollutants/analysis , Tunisia , Wastewater
11.
Environ Sci Process Impacts ; 20(4): 657-672, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29504006

ABSTRACT

Several decades of gold mining extraction activities in the Amazonian rainforest have caused deforestation and pollution. While ecological rehabilitation is essential for restoring biodiversity and decreasing erosion on deforested lands, few studies note the behaviour or toxicity of trace elements during the rehabilitation process. Our original study focused on the potential use of microbial activity and Hg speciation and compared them with As, Cu, Zn and Cr speciation in assessing the chemical and biological quality of ecological restoration efforts. We sampled two sites in French Guyana 17 years after rehabilitation efforts began. The former site was actively regenerated (R) with the leguminous species Clitoria racemosa and Acacia mangium, and the second site was passively regenerated with spontaneous vegetation (Sv). We also sampled soil from a control site without a history of gold mining (F). We performed microcosm soil experiments for 30 days, where trace element speciation and enzyme activities (i.e., FDA, dehydrogenase, ß-glucosidase, urease, alkaline and acid phosphatase) were estimated to characterise the behaviour of trace elements and the soil microbial activity. As bioindicators, the use of soil microbial carbon biomass and soil enzyme activities related to the carbon and phosphorus cycles seems to be relevant for assessing soil quality in rehabilitated and regenerated old mining sites. Our results showed that restoration with leguminous species had a positive effect on soil chemical quality and on soil microbial bioindicators, with activities that tended toward natural non-degraded soil (F). Active restoration processes also had a positive effect on Hg speciation by reducing its mobility. While in Sv we found more exchangeable and soluble mercury, in regenerated sites, Hg was mostly bound to organic matter. These results also suggested that enzyme activities and mercury cycles are sensitive to land restoration and must be considered when evaluating the efficiency of restoration processes.


Subject(s)
Conservation of Natural Resources/methods , Mercury/analysis , Mining , Rainforest , Soil Pollutants/analysis , Trace Elements/analysis , Biodiversity , Carbon/analysis , French Guiana , Nitrogen/analysis , Phosphorus/analysis , Soil/chemistry , Soil Microbiology
12.
BMC Evol Biol ; 6: 102, 2006 Nov 23.
Article in English | MEDLINE | ID: mdl-17123444

ABSTRACT

BACKGROUND: Soil-feeding termites are particularly interesting models for studying the effects of fragmentation, a natural or anthropic phenomenon described as promoting genetic differentiation. However, studying the link between fragmentation and genetics requires a method for identifying species unambiguously, especially when morphological diagnostic characters are lacking. In humivorous termites, which contribute to the fertility of tropical soils, molecular taxonomy and phylogenetic relationships are rarely studied, though mitochondrial and nuclear molecular markers are widely used in studies of pest termites. Here, we attempt to clarify the taxonomy of soil-feeding colonies collected throughout the naturally fragmented Lopé Reserve area (Gabon) and morphologically affiliated to Cubitermes sp. affinis subarquatus. The mitochondrial gene of cytochrome oxidase II (COII), the second nuclear rDNA internal transcribed spacer (ITS2) and five microsatellites were analyzed in 19 colonies. RESULTS: Bayesian Inference, Maximum Likelihood and Maximum Parsimony phylogenetic analyses, which were applied to the COII and ITS2 sequences, and Neighbor-Joining reconstructions, applied to the microsatellite data, reveal four major lineages in the Cubitermes sp. affinis subarquatus colonies. The concordant genealogical pattern of these unlinked markers strongly supports the existence of four cryptic species. Three are sympatric in the Reserve and are probably able to disperse within a mosaic of forests of variable ages and savannahs. One is limited to a very restricted gallery forest patch located in the North, outside the Reserve. CONCLUSION: Our survey highlights the value of combined mitochondrial and nuclear markers for exploring unknown groups such as soil-feeding termites, and their relevance for resolving the taxonomy of organisms with ambiguous morphological diagnostic characters.


Subject(s)
Genetic Drift , Genetic Variation , Isoptera/genetics , Mitochondria/genetics , Animals , Base Sequence , DNA, Intergenic/analysis , DNA, Mitochondrial/analysis , Gabon , Genetic Markers , Microsatellite Repeats , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...