Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci Methods ; 358: 109195, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33905791

ABSTRACT

BACKGROUND: A central goal of systems neuroscience is to understand the relationships amongst constituent units in neural populations, and their modulation by external factors, using high-dimensional and stochastic neural recordings. Parametric statistical models (e.g., coupling, encoding, and decoding models), play an instrumental role in accomplishing this goal. However, extracting conclusions from a parametric model requires that it is fit using an inference algorithm capable of selecting the correct parameters and properly estimating their values. Traditional approaches to parameter inference have been shown to suffer from failures in both selection and estimation. The recent development of algorithms that ameliorate these deficiencies raises the question of whether past work relying on such inference procedures have produced inaccurate systems neuroscience models, thereby impairing their interpretation. NEW METHOD: We used algorithms based on Union of Intersections, a statistical inference framework based on stability principles, capable of improved selection and estimation. COMPARISON: We fit functional coupling, encoding, and decoding models across a battery of neural datasets using both UoI and baseline inference procedures (e.g., ℓ1-penalized GLMs), and compared the structure of their fitted parameters. RESULTS: Across recording modality, brain region, and task, we found that UoI inferred models with increased sparsity, improved stability, and qualitatively different parameter distributions, while maintaining predictive performance. We obtained highly sparse functional coupling networks with substantially different community structure, more parsimonious encoding models, and decoding models that relied on fewer single-units. CONCLUSIONS: Together, these results demonstrate that improved parameter inference, achieved via UoI, reshapes interpretation in diverse neuroscience contexts.


Subject(s)
Algorithms , Brain
2.
Brief Bioinform ; 22(2): 1577-1591, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33372958

ABSTRACT

Decoding behavior, perception or cognitive state directly from neural signals is critical for brain-computer interface research and an important tool for systems neuroscience. In the last decade, deep learning has become the state-of-the-art method in many machine learning tasks ranging from speech recognition to image segmentation. The success of deep networks in other domains has led to a new wave of applications in neuroscience. In this article, we review deep learning approaches to neural decoding. We describe the architectures used for extracting useful features from neural recording modalities ranging from spikes to functional magnetic resonance imaging. Furthermore, we explore how deep learning has been leveraged to predict common outputs including movement, speech and vision, with a focus on how pretrained deep networks can be incorporated as priors for complex decoding targets like acoustic speech or images. Deep learning has been shown to be a useful tool for improving the accuracy and flexibility of neural decoding across a wide range of tasks, and we point out areas for future scientific development.


Subject(s)
Deep Learning , Neural Networks, Computer , Action Potentials , Calcium/metabolism , Electrocorticography , Electroencephalography , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Speech , Vision, Ocular
3.
Neural Comput ; 32(7): 1239-1276, 2020 07.
Article in English | MEDLINE | ID: mdl-32433901

ABSTRACT

Simultaneous recordings from the cortex have revealed that neural activity is highly variable and that some variability is shared across neurons in a population. Further experimental work has demonstrated that the shared component of a neuronal population's variability is typically comparable to or larger than its private component. Meanwhile, an abundance of theoretical work has assessed the impact that shared variability has on a population code. For example, shared input noise is understood to have a detrimental impact on a neural population's coding fidelity. However, other contributions to variability, such as common noise, can also play a role in shaping correlated variability. We present a network of linear-nonlinear neurons in which we introduce a common noise input to model-for instance, variability resulting from upstream action potentials that are irrelevant to the task at hand. We show that by applying a heterogeneous set of synaptic weights to the neural inputs carrying the common noise, the network can improve its coding ability as measured by both Fisher information and Shannon mutual information, even in cases where this results in amplification of the common noise. With a broad and heterogeneous distribution of synaptic weights, a population of neurons can remove the harmful effects imposed by afferents that are uninformative about a stimulus. We demonstrate that some nonlinear networks benefit from weight diversification up to a certain population size, above which the drawbacks from amplified noise dominate over the benefits of diversification. We further characterize these benefits in terms of the relative strength of shared and private variability sources. Finally, we studied the asymptotic behavior of the mutual information and Fisher information analytically in our various networks as a function of population size. We find some surprising qualitative changes in the asymptotic behavior as we make seemingly minor changes in the synaptic weight distributions.

4.
PLoS Comput Biol ; 15(9): e1007091, 2019 09.
Article in English | MEDLINE | ID: mdl-31525179

ABSTRACT

A fundamental challenge in neuroscience is to understand what structure in the world is represented in spatially distributed patterns of neural activity from multiple single-trial measurements. This is often accomplished by learning a simple, linear transformations between neural features and features of the sensory stimuli or motor task. While successful in some early sensory processing areas, linear mappings are unlikely to be ideal tools for elucidating nonlinear, hierarchical representations of higher-order brain areas during complex tasks, such as the production of speech by humans. Here, we apply deep networks to predict produced speech syllables from a dataset of high gamma cortical surface electric potentials recorded from human sensorimotor cortex. We find that deep networks had higher decoding prediction accuracy compared to baseline models. Having established that deep networks extract more task relevant information from neural data sets relative to linear models (i.e., higher predictive accuracy), we next sought to demonstrate their utility as a data analysis tool for neuroscience. We first show that deep network's confusions revealed hierarchical latent structure in the neural data, which recapitulated the underlying articulatory nature of speech motor control. We next broadened the frequency features beyond high-gamma and identified a novel high-gamma-to-beta coupling during speech production. Finally, we used deep networks to compare task-relevant information in different neural frequency bands, and found that the high-gamma band contains the vast majority of information relevant for the speech prediction task, with little-to-no additional contribution from lower-frequency amplitudes. Together, these results demonstrate the utility of deep networks as a data analysis tool for basic and applied neuroscience.


Subject(s)
Computational Biology/methods , Deep Learning , Sensorimotor Cortex/physiology , Speech/physiology , Electrocorticography , Humans , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...