Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 227(5): 696-707, 2023 03 01.
Article in English | MEDLINE | ID: mdl-35687888

ABSTRACT

BACKGROUND: Except for public health case reports, the incidence of Zika virus (ZIKV), chikungunya virus (CHIKV), and dengue virus (DENV) infection are not available to assess the potential blood transfusion safety threat in Brazil. METHODS: Pools of 6 donation samples (MP6) left over from human immunodeficiency virus, hepatitis B virus, and hepatitis C virus nucleic acid testing were combined to create MP18 pools (3 MP6 pools). Samples were tested using the Grifols triplex ZIKV, CHIKV, and DENV real-time transcription mediated amplification assay to estimate prevalence of RNAemia and incidence, and to compare these results to case reports in São Paulo, Belo Horizonte, Recife, and Rio de Janeiro, from April 2016 through June 2019. RESULTS: ZIKV, CHIKV, and DENV RNAemia were found from donors who donated without overt symptoms of infection that would have led to deferral. The highest RNAemic donation prevalence was 1.2% (95% CI, .8%-1.9%) for DENV in Belo Horizonte in May 2019. Arbovirus infections varied by location and time of year, and were not always aligned with annual arbovirus outbreak seasons in different regions of the country. CONCLUSIONS: Testing donations for arboviruses in Brazil can contribute to public health. Transfusion recipients were likely exposed to ZIKV, CHIKV, and DENV viremic blood components during the study period.


Subject(s)
Arboviruses , Chikungunya Fever , Chikungunya virus , Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Humans , Chikungunya Fever/epidemiology , Brazil/epidemiology , Blood Donors , Incidence
2.
J Food Prot ; 78(4): 675-84, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25836391

ABSTRACT

Escherichia coli O157:H7 and six serovars (O26, O103, O121, O111, O145, and O45) are frequently implicated in severe clinical illness worldwide. Standard testing methods using stx, eae, and O serogroup-specific gene sequences for detecting the top six non-O157 STEC bear the disadvantage that these genes may reside, independently, in different nonpathogenic organisms, leading to false-positive results. The ecf operon has previously been identified in the large enterohemolysin-encoding plasmid of eae-positive Shiga toxin-producing E. coli (STEC). Here, we explored the utility of the ecf operon as a single marker to detect eae-positive STEC from pure broth and primary meat enrichments. Analysis of 501 E. coli isolates demonstrated a strong correlation (99.6%) between the presence of the ecf1 gene and the combined presence of stx, eae, and ehxA genes. Two large studies were carried out to determine the utility of an ecf1 detection assay to detect non-O157 STEC strains in enriched meat samples in comparison to the results using the U. S. Department of Agriculture Food Safety and Inspection Service (FSIS) method that detects stx and eae genes. In ground beef samples (n = 1,065), the top six non-O157 STEC were detected in 4.0% of samples by an ecf1 detection assay and in 5.0% of samples by the stx- and eae-based method. In contrast, in beef samples composed largely of trim (n = 1,097), the top six non-O157 STEC were detected at 1.1% by both methods. Estimation of false-positive rates among the top six non-O157 STEC revealed a lower rate using the ecf1 detection method (0.5%) than using the eae and stx screening method (1.1%). Additionally, the ecf1 detection assay detected STEC strains associated with severe illness that are not included in the FSIS regulatory definition of adulterant STEC.


Subject(s)
DNA, Bacterial/isolation & purification , Escherichia coli Proteins/genetics , Red Meat/microbiology , Shiga-Toxigenic Escherichia coli/isolation & purification , Animals , Cattle , Escherichia coli Proteins/metabolism , Food Contamination/analysis , Food Microbiology , Genetic Markers , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Shiga Toxin/genetics , Shiga-Toxigenic Escherichia coli/genetics
3.
Mutat Res ; 505(1-2): 63-74, 2002 Aug 29.
Article in English | MEDLINE | ID: mdl-12175906

ABSTRACT

The protein encoded by the hepatitis B virus (HBV)-X gene, HBX, has been implicated to be involved in the development of HBV-associated liver cancer. HBX is a multifunctional regulatory protein that has been identified as a potential oncogene but its exact function remains unclear. HBX was documented to interact with several factors involved in cellular DNA repair as well as compromise the cell's ability to repair damaged DNA. We previously documented an accumulation of genetic alterations in two HepG2 cell lines independently transfected with HBV. In this report, we investigate the effect of the HBV-X gene (HBX) on the stability of the host genome using HepG2 stable transfectants (HepG2-HBX) and vector controls (HepG2-neo). We document that all HepG2-HBX clones analyzed contain HBX gene integrated and HBX transcript. Our data demonstrate that HepG2-HBX cells have an increased number of chromosome alterations and micronuclei formation compared to vector controls. A total of 10 de novo chromosomal rearrangements involving nine different chromosomes were detected in the HepG2-HBX clones, while no new rearrangements were found in vector controls. Each HepG2-HBX clone contained independently occurring de novo alterations not found in other HBX or vector clones. A three-fold increase of micronuclei formation was detected in HepG2-HBX cells compared to vector controls. Micronuclei originated from all chromosomes, however, preliminary data indicated that micronuclei originating from chromosomes 2, 3, 7, 18 and 20 were found in a greater amount in cells expressing the HBX gene. Interestingly, chromosomes 2, 18 and 20 were three of the chromosomes found rearranged in HepG2-HBX clones. These data provide evidence that genomic integrity was affected in cells expressing the HBX gene. De novo cytogenetic alterations identified in HepG2-HBX clones implicate the involvement of HBX in the process and support the hypothesis that HBX may interfere with normal cellular processes responsible for genomic integrity, increasing the risk for acquiring genetic mutations in infected hepatocytes.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cell Nucleus/ultrastructure , Chromosome Aberrations , Hepatitis B virus/genetics , Liver Neoplasms/pathology , Trans-Activators/physiology , DNA Damage , DNA Repair , Hepatitis B virus/pathogenicity , Humans , In Situ Hybridization, Fluorescence , Micronucleus Tests , Molecular Probe Techniques , Recombinant Fusion Proteins/physiology , Reverse Transcriptase Polymerase Chain Reaction , Trans-Activators/genetics , Transfection , Tumor Cells, Cultured/ultrastructure , Viral Regulatory and Accessory Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...