Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 11532, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35798958

ABSTRACT

Pepino mosaic virus (PepMV) is a potexvirus of the family Alphaflexiviridae within the order of Tymovirales that threatens tomato production worldwide. PepMV possesses a positive-strand RNA genome with a 5'-methylguanosine cap and a 3'-polyA tail. Previously, using partially-purified viral RNA polymerase important secondary structures within the 3'-untranslated region (UTR) of PepMV RNA were identified. Here we show that an RNA pseudoknot can be formed in the 3'-UTR that includes part of the polyA tail. Using protoplasts, we demonstrate that the pseudoknot is required for replication of PepMV RNA. Mutational analysis and native gel electrophoresis further show that the pseudoknot is stabilized by UAU base triples, as is the human telomerase RNA pseudoknot. The presence of a pseudoknot in several other members of the Alpha- and Betaflexiviridae is supported by covariance analysis and native gel electrophoresis of other potexvirus, capillovirus and trichovirus RNAs. The ubiquitous presence of the pseudoknot in viruses of the Betaflexiviridae, suggests that the pseudoknot is a typical trait of the Betaflexiviridae that may have been adopted by many potexviruses during evolution.


Subject(s)
Potexvirus , Solanum lycopersicum , Virus Replication , 3' Untranslated Regions/genetics , Solanum lycopersicum/virology , Plant Diseases/virology , Potexvirus/genetics , Potexvirus/physiology , RNA, Viral/chemistry
2.
Virus Res ; 279: 197887, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32045630

ABSTRACT

Cucurbit chlorotic yellows virus (CCYV) is a new member of the genus Crinivirus (family Closteroviridae) with a bi-partite genome. CCYV RNA 1-encoded p22 has recently been reported to be a weak local suppressor of RNA silencing for which an interaction with cucumber SKP1LB1 through an F-box-like motif was demonstrated to be essential. Using a bacterially expressed maltose-binding protein (MBP) fusion of CCYV p22 in electrophoretic mobility shift assays (EMSA), we have examined in vitro its ability to bind different RNA templates. Our experiments showed that CCYV p22 is able to bind to ss and ds long RNAs, in addition to ss and ds small interfering (si) RNA molecules. CCYV p22 deletion mutants (MBP_CCYV DEL1-4) were produced that covered the entire protein, with MBP_CCYV DEL2 corresponding to the F-box motif and its flanking sequences. None of these deletions abolished the capacity of CCYV p22 to bind ss- and dsRNA molecules. However, deletions affecting the C-terminal half of the protein resulted in decreased binding efficiency for either ss- or dsRNA molecules indicating that essential elements for these interactions are located in this region. Taken together, our data add to current knowledge of the mode of action of suppressors of RNA silencing encoded by genes sited at the 3'-terminus of crinivirus genomic RNA 1, and shed light on the involvement of CCYV p22 in the suppression of RNA silencing and/or in another role in the virus life cycle via RNA binding.


Subject(s)
Crinivirus/genetics , Crinivirus/metabolism , RNA, Double-Stranded/metabolism , RNA, Small Interfering , Cucumis sativus/virology , Genome, Viral , Plant Diseases/virology , RNA, Viral/genetics , Sequence Deletion
3.
Int J Mol Sci ; 19(12)2018 Nov 25.
Article in English | MEDLINE | ID: mdl-30477269

ABSTRACT

Pepino mosaic virus (PepMV) is a mechanically-transmitted tomato pathogen of importance worldwide. Interactions between the PepMV coat protein and triple gene block protein (TGBp1) with the host heat shock cognate protein 70 and catalase 1 (CAT1), respectively, have been previously reported by our lab. In this study, a novel tomato interactor (SlTXND9) was shown to bind the PepMV TGBp1 in yeast-two-hybrid screening, in vitro pull-down and bimolecular fluorescent complementation (BiFC) assays. SlTXND9 possesses part of the conserved thioredoxin (TRX) active site sequence (W__PC vs. WCXPC), and TXND9 orthologues cluster within the TRX phylogenetic superfamily closest to phosducin-like protein-3. In PepMV-infected and healthy Nicotiana benthamiana plants, NbTXND9 mRNA levels were comparable, and expression levels remained stable in both local and systemic leaves for 10 days post inoculation (dpi), as was also the case for catalase 1 (CAT1). To localize the TXND9 in plant cells, a polyclonal antiserum was produced. Purified α-SlTXND9 immunoglobulin (IgG) consistently detected a set of three protein bands in the range of 27⁻35 kDa, in the 1000 and 30,000 g pellets, and the soluble fraction of extracts of healthy and PepMV-infected N. benthamiana leaves, but not in the cell wall. These bands likely consist of the homologous protein NbTXND9 and its post-translationally modified derivatives. On electron microscopy, immuno-gold labelling of ultrathin sections of PepMV-infected N. benthamiana leaves using α-SlTXND9 IgG revealed particle accumulation close to plasmodesmata, suggesting a role in virus movement. Taken together, this study highlights a novel tomato-PepMV protein interaction and provides data on its localization in planta. Currently, studies focusing on the biological function of this interaction during PepMV infection are in progress.


Subject(s)
Host-Pathogen Interactions , Plant Leaves/genetics , Plant Proteins/genetics , Potexvirus/genetics , Solanum lycopersicum/genetics , Thioredoxins/genetics , Viral Proteins/genetics , Amino Acid Sequence , Antibodies/chemistry , Gene Expression , Immune Sera/chemistry , Immunohistochemistry , Solanum lycopersicum/classification , Solanum lycopersicum/metabolism , Solanum lycopersicum/virology , Phylogeny , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Plant Leaves/virology , Plant Proteins/metabolism , Plasmodesmata/genetics , Plasmodesmata/metabolism , Plasmodesmata/virology , Potexvirus/metabolism , Protein Binding , Sequence Alignment , Sequence Homology, Amino Acid , Thioredoxins/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/virology , Viral Proteins/metabolism
4.
Viruses ; 8(6)2016 06 14.
Article in English | MEDLINE | ID: mdl-27314380

ABSTRACT

Cucurbit yellow stunting disorder virus (CYSDV), a bipartite whitefly-transmitted virus, constitutes a major threat to commercial cucurbit production worldwide. Here, construction of full-length CYSDV RNA1 and RNA2 cDNA clones allowed the in vitro synthesis of RNA transcripts able to replicate in cucumber protoplasts. CYSDV RNA1 proved competent for replication; transcription of both polarities of the genomic RNA was detectable 24 h post inoculation. Hybridization of total RNA extracted from transfected protoplasts or from naturally CYSDV-infected cucurbits revealed high-level transcription of the p22 subgenomic RNA species. Replication of CYSDV RNA2 following co-transfection with RNA1 was also observed, with similar transcription kinetics. A CYSDV RNA2 cDNA clone (T3CM8Δ) comprising the 5'- and 3'-UTRs plus the 3'-terminal gene, generated a 2.8 kb RNA able to replicate to high levels in protoplasts in the presence of CYSDV RNA1. The clone T3CM8Δ will facilitate reverse genetics studies of CYSDV gene function and RNA replication determinants.


Subject(s)
Crinivirus/genetics , Cucumis sativus/virology , DNA, Complementary , Protoplasts/virology , RNA, Viral/biosynthesis , Virus Replication , Transcription, Genetic , Transfection
5.
Virus Res ; 190: 110-7, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-25051146

ABSTRACT

Pepino mosaic virus (PepMV) is a mechanically-transmitted positive-strand RNA potexvirus, with a 6410 nt long single-stranded (ss) RNA genome flanked by a 5'-methylguanosine cap and a 3' poly-A tail. Computer-assisted folding of the 64 nt long PepMV 3'-untranslated region (UTR) resulted in the prediction of three stem-loop structures (hp1, hp2, and hp3 in the 3'-5' direction). The importance of these structures and/or sequences for promotion of negative-strand RNA synthesis and binding to the RNA dependent RNA polymerase (RdRp) was tested in vitro using a specific RdRp assay. Hp1, which is highly variable among different PepMV isolates, appeared dispensable for negative-strand synthesis. Hp2, which is characterized by a large U-rich loop, tolerated base-pair changes in its stem as long as they maintained the stem integrity but was very sensitive to changes in the U-rich loop. Hp3, which harbours the conserved potexvirus ACUUAA hexamer motif, was essential for template activity. Template-RNA polymerase binding competition experiments showed that the ACUUAA sequence represents a high-affinity RdRp binding element.


Subject(s)
3' Untranslated Regions , Gene Expression Regulation, Viral , Potexvirus/genetics , RNA, Viral/genetics , Base Sequence , Inverted Repeat Sequences , Molecular Sequence Data , Nucleic Acid Conformation , Plant Diseases/virology , Potexvirus/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism
6.
Virus Res ; 167(2): 267-72, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22617023

ABSTRACT

Pepino mosaic virus (PepMV)-infected tomato plants were used to develop an in vitro template-dependent system for the study of viral RNA synthesis. Differential sedimentation and sucrose-gradient purification of PepMV-infected tomato extracts resulted in fractions containing a transcriptionally active membrane-bound RNA-dependent RNA polymerase (RdRp). In the presence of Mg(2+) ions, (32)P-labelled UTP and unlabelled ATP, CTP, GTP, the PepMV RdRp catalysed the conversion of endogenous RNA templates into single- and double-stranded (ds) genomic RNAs and three 3'-co-terminal subgenomic dsRNAs. Hybridisation experiments showed that the genomic ssRNA was labelled only in the plus strand, the genomic dsRNA mainly in the plus strand and the three subgenomic dsRNAs equally in both strands. Following removal of the endogenous templates from the membrane-bound complex, the purified template-dependent RdRp could specifically catalyse transcription of PepMV virion RNA, in vitro-synthesized full-length plus-strand RNA and the 3'-termini of both the plus- and minus-strand RNAs. Rabbit polyclonal antibodies against an immunogenic epitope of the PepMV RdRp (anti-RdRp) detected a protein of approximately 164kDa in the membrane-bound and template-dependent RdRp preparations and exclusively inhibited PepMV RNA synthesis when added to the template-dependent in vitro transcription system. The 300 nucleotides long 3'-terminal region of the PepMV genome, containing a stretch of at least 20 adenosine (A) residues, was an adequate exogenous RNA template for RdRp initiation of the minus-strand synthesis but higher transcription efficiency was observed as the number of A residues increased. This observation might indicate a role for the poly(A)-tail in the formation and stabilisation of secondary structure(s) essential for initiation of transcription. The template-dependent specific RdRp system described in this article will facilitate identification of RNA elements and host components required for PepMV RNA synthesis.


Subject(s)
Potexvirus/enzymology , Potexvirus/genetics , RNA, Viral/biosynthesis , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/metabolism , Solanum lycopersicum/virology , Coenzymes/metabolism , Magnesium/metabolism , Plant Extracts/metabolism
7.
Virus Res ; 163(1): 28-39, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21884738

ABSTRACT

Plant viral capsid proteins (CP) can be involved in virus movement, replication and symptom development as a result of their interaction with host factors. The identification of such interactions may thus provide information about viral pathogenesis. In this study, Pepino mosaic virus (PepMV) CP was used as bait to screen a tomato (Solanum lycopersicum) cDNA library for potential interactors in yeast. Of seven independent interacting clones, six were predicted to encode the C-termini of the heat shock cognate 70 (Hsc70) proteins. Three full length tomato Hsc70s (named Hsc70.1, .2, .3) were used to confirm the interaction in the yeast two hybrid assay and bimolecular fluorescent complementation (BiFC) in planta. The PepMV CP-Hsc70 interaction was confirmed only in the case of Hsc70.3 for both assays. In BiFC, the interaction was visualized in the cytoplasm and nucleus of agroinfiltrated Nicotiana benthamiana epidermal cells. During PepMV infection, Hsc70.3 mRNA levels were induced and protein accumulation increased at 48 and 72 h post inoculation. In transmission electron microscopy using immunogold labelling techniques, Hsc70 was detected to co-localize with virions in the phloem of PepMV-infected tomato leaves. These observations, together with the co-purification of Hsc70 with PepMV virions further support the notion of a PepMV CP/Hsc70 interaction during virus infection.


Subject(s)
Capsid Proteins/metabolism , HSC70 Heat-Shock Proteins/metabolism , Host-Pathogen Interactions , Plant Proteins/metabolism , Potexvirus/pathogenicity , Protein Interaction Mapping , Solanum lycopersicum/virology , Microscopy, Electron, Transmission , Molecular Sequence Data , Protein Binding , Sequence Analysis, DNA , Nicotiana/virology , Two-Hybrid System Techniques
8.
Virus Res ; 145(1): 48-53, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19540278

ABSTRACT

Post-transcriptional gene silencing (PTGS) degrades RNA in a sequence-specific manner and is utilised by plants as a natural defence mechanism against virus invaders. Two members of the genus Crinivirus have been reported to encode suppressors and counter PTGS: Sweet potato chlorotic stunt virus p22 and Tomato chlorosis virus (ToCV) p22, coat protein and coat protein minor. Using an Agrobacterium-mediated transient assay on Nicotiana benthamiana wildtype and 16c plants, we screened four Cucurbit yellow stunting disorder virus (CYSDV) RNA 1-encoded proteins (papain-like protease, p25, p5.2 and p22) to determine which one possess PTGS suppressor activity. Amongst these proteins, only CYSDV p25 was able to suppress (double- and single-stranded) RNA-induced silencing of the green fluorescent protein (GFP) mRNA. Restoration of GFP expression by CYSDV p25 in both of these experiments had no apparent effect on the accumulation of the small interfering RNAs. The identification of CYSDV p25 adds to the list of suppressors encoded by crinivirus RNA 1 molecules, which are unrelated in terms of amino acid sequence homology suggesting distinct PTGS suppression mechanisms and possible roles in viral replication.


Subject(s)
Crinivirus/genetics , Nicotiana/genetics , Plant Diseases/genetics , RNA Interference , Viral Proteins/metabolism , Crinivirus/metabolism , Genes, Viral , Green Fluorescent Proteins , Host-Pathogen Interactions , Plant Diseases/virology , RNA, Small Interfering/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Nicotiana/metabolism , Nicotiana/virology , Viral Proteins/genetics
9.
Virus Genes ; 24(3): 225-30, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12086142

ABSTRACT

The complete nucleotide sequence of Cucurbit yellow stunting disorder virus (CYSDV) RNA 2, a whitefly (Bemisia tabaci)-transmitted closterovirus with a bi-partite genome, is reported. CYSDV RNA 2 is 7,281 nucleotides long and contains the closterovirus hallmark gene array with a similar arrangement to the prototype member of the genus Crinivirus, Lettuce infectious yellows virus (LIYV). CYSDV RNA 2 contains open reading frames (ORFs) potentially encoding in a 5' to 3' direction for proteins of 5 kDa (ORF 1; hydrophobic protein), 62 kDa (ORF 2; heat shock protein 70 homolog, HSP70h), 59 kDa (ORF 3; protein of unknown function), 9 kDa (ORF 4; protein of unknown function), 28.5 kDa (ORF 5; coat protein, CP), 53 kDa (ORF 6; coat protein minor, CPm), and 26.5 kDa (ORF 7; protein of unknown function). Pairwise comparisons of CYSDV RNA 2-encoded proteins (HSP70h, p59 and CPm) among the closteroviruses showed that CYSDV is closely related to LIYV. Phylogenetic analysis based on the amino acid sequence of the HSP70h, indicated that CYSDV clusters with other members of the genus Crinivirus, and it is related to Little cherry virus-1 (LChV-1), but is distinct from the aphid- or mealybug-transmitted closteroviruses.


Subject(s)
Closterovirus/genetics , RNA, Viral/analysis , Base Sequence , Cloning, Molecular , Closterovirus/classification , Cucumis , Cucumis sativus , Genome, Viral , Molecular Sequence Data , Nucleic Acid Hybridization , Phylogeny , RNA, Double-Stranded , Sequence Analysis, DNA , Sequence Analysis, RNA
10.
Virus Genes ; 25(3): 317-22, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12881642

ABSTRACT

Potato yellow vein virus (PYVV) is a whitefly-transmitted (Trialeurodes vaporariorum) closterovirus (WTC) with an as yet unidentified genome composition. PYVV dsRNA preparations consist of three high molecular weight dsRNA species (dsRNAs 1, 2 and 3) 8.0, 5.5 and 4.0 kbp in size respectively, as well as two low molecular weight dsRNA species of 2.0 and 1.8 kbp (denoted x and y). The PYVV capsid protein minor (CPm) gene was identified on the dsRNA 3 species, and was subsequently cloned and sequenced. The PYVV CPm gene is 2022 nucleotides long and putatively encodes a protein with estimated size 77.5 kDa. The PYVV CPm gene product is considerably larger than the equivalent proteins encoded by the bipartite criniviruses, Lettuce infectious yellows virus (LIYV) and Cucurbit yellow stunting disorder virus (CYSDV) (52 and 53 kDa, respectively). The PYVV CPm possesses a centralized domain which is absent from both the LIYV and CYSDV CPm counterparts. Pairwise comparisons as well as phylogenetic analysis based on the available amino acid sequences of the CPm of various WTCs, showed that PYVV is closely related to LIYV, CYSDV and also Beet pseudo-yellows virus.


Subject(s)
Capsid Proteins/genetics , Closteroviridae/genetics , Amino Acid Sequence , Animals , Blotting, Northern , Evolution, Molecular , Hemiptera/virology , Molecular Sequence Data , Phylogeny , RNA, Double-Stranded/genetics , Reverse Transcriptase Polymerase Chain Reaction , Solanum tuberosum/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...