Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Struct Biotechnol J ; 14: 207-210, 2016.
Article in English | MEDLINE | ID: mdl-27904714

ABSTRACT

Microphysiological systems (organs-on-chips, tissue chips) are devices designed to recapitulate human physiology that could be used to better understand drug responses not easily addressed using other in vivo systems or in vitro animal models. Although still in development, initial results seem promising as tissue chips exhibit in vivo systems-like functional responses. The National Center for Advancing Translation Science (NCATS) identifies this technology as a potential tool that could improve the process of getting safer, more effective treatments to patients, and has led to the Tissue Chip Program, which aims to develop, integrate and validate major organ systems for testing. In addition to organ chip development, NCATS emphasizes disseminating the technology to researchers. Commercialization has become an important issue, reflecting the difficulty of translation from discovery to adoption and wide availability. Therefore, NCATS issued a Request for Information (RFI) targeted to existing partnerships for commercializing tissue chips. The goal was to identify successes, failures and the best practices that could provide useful guidance for future partnerships aiming to make tissue chip technology widely available.

2.
J Neurophysiol ; 90(1): 226-44, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12634274

ABSTRACT

The anatomical connections of the pregeniculate complex (PrGC) with components of the visual-ocular motor system suggested its contribution to ocular motor behavior. Subsequent studies reported saccade-related activity in the primate PrGC. To determine its contribution, we characterized pregeniculate units (n = 128) in alert macaques during ocular motor tasks and visual stimulation. We found that 36/109 saccade-related units exhibited postsaccadic bursts or pauses in tonic discharge for saccades of any amplitude or direction. In contrast to previous results, 46/109 responses preceded or coincided with the saccade, while 47/109 responses were directionally tuned. Pregeniculate units were modulated not only in association with saccades (109/128) but also with smooth eye movements and visual motion (20/128) or eye position (23/128). Multiple ocular motor signals were recorded from 19% of the units, indicating signal convergence on individual neurons. Visual responses were demonstrated in 51% of PrGC units: visual field illumination modulated the resting discharge of 33 units; the responses of 37 saccade-related units and all 23 position-dependent units were modulated by visual stimulation. Early saccadic activity in the PrGC suggests that it contributes more to gaze than postsaccadic modulation of visual or ocular motor activity. The patterns of saccadic responses and the modulation of PrGC activity in association with a variety of visual-ocular motor behaviors suggest its potential role as a relay between the parietal cortex and elements of the brain stem ocular motor pathways, such as the superior colliculus and pretectal nucleus of the optic tract.


Subject(s)
Eye Movements/physiology , Neurons/physiology , Thalamus/physiology , Action Potentials , Animals , Dominance, Ocular/physiology , Electrophysiology , Geniculate Bodies/physiology , Macaca fascicularis , Macaca mulatta , Motion Perception/physiology , Motor Activity/physiology , Photic Stimulation , Pursuit, Smooth/physiology , Saccades/physiology , Visual Fields/physiology , Visual Pathways/physiology , Visual Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...