Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Eng Sci Med ; 46(3): 1033-1041, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37219798

ABSTRACT

Gamma evaluation is currently the most widely used dose comparison method for patient specific quality assurance (PSQA). However, existing methods for normalising the dose difference, using either the dose at the global maximum dose point or at each local point, can respectively lead to under- and over-sensitivity to dose differences in organ-at-risk structures. This may be of concern for plan evaluation from clinical perspectives. This study has explored and proposed a new method called structural gamma, which takes structural dose tolerances into consideration while performing gamma analysis for PSQA. As a demonstration of the structural gamma method, a total of 78 retrospective plans on four treatment sites were re-calculated on an in-house Monte Carlo system and compared with doses calculated from the treatment planning system. Structural gamma evaluations were performed using both QUANTEC dose tolerances and radiation oncologist specified dose tolerances, then compared with conventional global and local gamma evaluations. Results demonstrated that structural gamma evaluation is especially sensitive to errors in structures with restrictive dose constraints. The structural gamma map provides both geometric and dosimetric information on PSQA results, allowing straightforward clinical interpretation. The proposed structure-based gamma method accounts for dose tolerances for specific anatomical structures. This method can provide a clinically useful method to assess and communicate PSQA results, offering radiation oncologists a more intuitive way of examining agreement in surrounding critical normal structures.


Subject(s)
Algorithms , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Dosage , Retrospective Studies , Organs at Risk , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods
2.
Phys Med ; 78: 156-165, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33035927

ABSTRACT

Given the substantial literature on the use of Monte Carlo (MC) simulations to verify treatment planning system (TPS) calculations of radiotherapy dose in heterogeneous regions, such as head and neck and lung, this study investigated the potential value of running MC simulations of radiotherapy treatments of nominally homogeneous pelvic anatomy. A pre-existing in-house MC job submission and analysis system, built around BEAMnrc and DOSXYZnrc, was used to evaluate the dosimetric accuracy of a sample of 12 pelvic volumetric arc therapy (VMAT) treatments, planned using the Varian Eclipse TPS, where dose was calculated with both the Analytical Anisotropic Algorithm (AAA) and the Acuros (AXB) algorithm. In-house TADA (Treatment And Dose Assessor) software was used to evaluate treatment plan complexity, in terms of the small aperture score (SAS), modulation index (MI) and a novel exposed leaf score (ELS/ELA). Results showed that the TPS generally achieved closer agreement with the MC dose distribution when treatments were planned for smaller (single-organ) targets rather than larger targets that included nodes or metastases. Analysis of these MC results with reference to the complexity metrics indicated that while AXB was useful for reducing dosimetric uncertainties associated with density heterogeneity, the residual TPS dose calculation uncertainties resulted from treatment plan complexity and TPS model simplicity. The results of this study demonstrate the value of using MC methods to recalculate and check the dose calculations provided by commercial radiotherapy TPSs, even when the treated anatomy is assumed to be comparatively homogeneous, such as in the pelvic region.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Algorithms , Monte Carlo Method , Phantoms, Imaging , Radiometry , Radiotherapy Dosage
3.
J Appl Clin Med Phys ; 20(11): 189-198, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31613053

ABSTRACT

PURPOSE: Gamma evaluation is the most commonly used technique for comparison of dose distributions for patient-specific pretreatment quality assurance in radiation therapy. Alternative dose comparison techniques have been developed but not widely implemented. This study aimed to compare and evaluate the performance of several previously published alternatives to the gamma evaluation technique, by systematically evaluating a large number of patient-specific quality assurance results. METHODS: The agreement indices (or pass rates) for global and local gamma evaluation, maximum allowed dose difference (MADD) and divide and conquer (D&C) techniques were calculated using a selection of acceptance criteria for 429 patient-specific pretreatment quality assurance measurements. Regression analysis was used to quantify the similarity of behavior of each technique, to determine whether possible variations in sensitivity might be present. RESULTS: The results demonstrated that the behavior of D&C gamma analysis and MADD box analysis differs from any other dose comparison techniques, whereas MADD gamma analysis exhibits similar performance to the standard global gamma analysis. Local gamma analysis had the least variation in behavior with criteria selection. Agreement indices calculated for 2%/2 mm and 2%/3 mm, and 3%/2 mm and 3%/3 mm were correlated for most comparison techniques. CONCLUSION: Radiation oncology treatment centers looking to compare between different dose comparison techniques, criteria or lower dose thresholds may apply the results of this study to estimate the expected change in calculated agreement indices and possible variation in sensitivity to delivery dose errors.


Subject(s)
Algorithms , Neoplasms/radiotherapy , Quality Assurance, Health Care/standards , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/standards , Gamma Rays , Humans , Organs at Risk/radiation effects , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...