Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(47): eabg1530, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34797713

ABSTRACT

In terrestrial mammals, body volatiles can effectively trigger or block conspecific aggression. Here, we tested whether hexadecanal (HEX), a human body volatile implicated as a mammalian-wide social chemosignal, affects human aggression. Using validated behavioral paradigms, we observed a marked dissociation: Sniffing HEX blocked aggression in men but triggered aggression in women. Next, using functional brain imaging, we uncovered a pattern of brain activity mirroring behavior: In both men and women, HEX increased activity in the left angular gyrus, an area implicated in perception of social cues. HEX then modulated functional connectivity between the angular gyrus and a brain network implicated in social appraisal (temporal pole) and aggressive execution (amygdala and orbitofrontal cortex) in a sex-dependent manner consistent with behavior: increasing connectivity in men but decreasing connectivity in women. These findings implicate sex-specific social chemosignaling at the mechanistic heart of human aggressive behavior.

2.
Chem Senses ; 462021 01 01.
Article in English | MEDLINE | ID: mdl-33388762

ABSTRACT

Functional magnetic resonance imaging (fMRI) has become the leading method for measuring the human brain response to sensory stimuli. However, olfaction fMRI lags behind vision and audition fMRI for 2 primary reasons: First, the olfactory brain areas are particularly susceptible to imaging artifacts, and second, the olfactory stimulus is particularly difficult to control in the fMRI environment. A component of the latter is related to the odorant delivery human-machine interface, namely the point where odorants exit the dispensing apparatus to reach at the nose. Previous approaches relied on either nasal cannulas or nasal masks, each associated with particular drawbacks and discomforts. Here, we provide detailed descriptions and instructions for transforming the MRI head-coil into an olfactory microenvironment, or odor canopy, where odorants can be switched on and off in less than 150 ms without cannula or mask. In a proof-of-concept experiment, we demonstrate that odor canopy provides for clearly dissociable odorant presence and absence, with no nonolfactory cues. Moreover, we find that odor canopy is rated more comfortable than nasal mask, and we demonstrate that using odor canopy in the fMRI generates a typical olfactory brain response. We conclude in recommending this approach for minimized discomfort in fMRI of olfaction.


Subject(s)
Magnetic Resonance Imaging , Odorants , Brain , Brain Mapping , Humans , Smell
3.
Curr Biol ; 30(8): 1435-1446.e5, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32142693

ABSTRACT

Memory consolidation can be promoted via targeted memory reactivation (TMR) that re-presents training cues or context during sleep. Whether TMR acts locally or globally on cortical sleep oscillations remains unknown. Here, we exploit the unique functional neuroanatomy of olfaction with its ipsilateral stimulus processing to perform local TMR in one brain hemisphere. Participants learned associations between words and locations in left or right visual fields with contextual odor throughout. We found lateralized event-related potentials during task training that indicate unihemispheric memory processes. During post-learning naps, odors were presented to one nostril in non-rapid eye movement (NREM) sleep. Memory for specific words processed in the cued hemisphere (ipsilateral to stimulated nostril) was improved after local TMR during sleep. Unilateral odor cues locally modulated slow-wave (SW) power such that regional SW power increase was lower in the cued hemisphere relative to the uncued hemisphere and negatively correlated with select memories for cued words. Moreover, local TMR improved phase-amplitude coupling (PAC) between slow oscillations and sleep spindles specifically in the cued hemisphere. The effects on memory performance and cortical sleep oscillations were not observed when unilateral olfactory stimulation during sleep followed learning without contextual odor. Thus, TMR in human sleep transcends global action by selectively promoting specific memories associated with local sleep oscillations.


Subject(s)
Evoked Potentials , Memory Consolidation/physiology , Sleep/physiology , Smell , Adult , Female , Humans , Male , Middle Aged , Young Adult
4.
Learn Mem ; 26(7): 272-279, 2019 07.
Article in English | MEDLINE | ID: mdl-31209122

ABSTRACT

Adolescence is often filled with positive and negative emotional experiences that may change how individuals remember and respond to stimuli in their environment. In adults, aversive events can both enhance memory for associated stimuli as well as generalize to enhance memory for unreinforced but conceptually related stimuli. The present study tested whether learned aversive associations similarly lead to better memory and generalization across a category of stimuli in adolescents. Participants completed an olfactory Pavlovian category conditioning task in which trial-unique exemplars from one of two categories were partially reinforced with an aversive odor. Participants then returned 24 h later to complete a recognition memory test. We found better corrected recognition memory for the reinforced versus the unreinforced category of stimuli in both adults and adolescents. Further analysis revealed that enhanced recognition memory was driven specifically by better memory for the reinforced exemplars. Autonomic arousal during learning was also related to subsequent memory. These findings build on previous work in adolescent and adult humans and rodents showing comparable acquisition of aversive Pavlovian conditioned responses across age groups and demonstrate that memory for stimuli with an acquired aversive association is enhanced in both adults and adolescents.


Subject(s)
Avoidance Learning/physiology , Memory, Episodic , Psychology, Adolescent , Recognition, Psychology/physiology , Adolescent , Adult , Anxiety/physiopathology , Conditioning, Classical , Emotions/physiology , Female , Galvanic Skin Response , Humans , Individuality , Male , Odorants , Reinforcement, Psychology , Uncertainty , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...