Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Conserv Physiol ; 11(1): coad037, 2023.
Article in English | MEDLINE | ID: mdl-37266517

ABSTRACT

Shark assessments in the Mediterranean Sea are still scarce, and serum chemistry and haematological data have yet to be reported for wild dusky (Carcharhinus obscurus) or sandbar (Carcharhinus plumbeus) shark populations in the Mediterranean Sea. Herein, blood samples were obtained from adult dusky (n = 23) and sandbar (n = 14) sharks from an aggregation site near the Hadera power and desalination plants in Israel in the winters of 2016-20. Several serum chemistry analytes were characterized with relation to stress, body size and environmental conditions. Glucose concentrations were higher, while total cholesterol concentrations were lower in dusky sharks than in sandbar sharks, potentially due to distinct metabolic pathways utilized during the capture-related activity by both species. However, differences in sex and size are noted and should be considered. The blood cell morphology of both species was consistent with previous findings for sandbar sharks. Atypical monocytes were noted in one dusky shark. Preliminary and exploratory reference intervals for female dusky sharks were calculated for glucose, triglycerides, total cholesterol, total protein and creatine kinase. These data must be viewed with caution due to the potential influence of capture-related stress on analyte concentrations and activities and the fact that only females were employed in the calculations. Moreover, the sampling site is adjacent to coastal power and desalination plants, which may significantly affect shark physiology. Although limited, this novel database on dusky and sandbar shark serum chemistry and haematology aspects is essential as a first attempt to obtain data on these species in the eastern Mediterranean Sea and for future conservation and long-term biomonitoring efforts.

2.
Front Microbiol ; 14: 1027804, 2023.
Article in English | MEDLINE | ID: mdl-36910211

ABSTRACT

Sharks, as apex predators, play an essential ecological role in shaping the marine food web and maintaining healthy and balanced marine ecosystems. Sharks are sensitive to environmental changes and anthropogenic pressure and demonstrate a clear and rapid response. This designates them a "keystone" or "sentinel" group that may describe the structure and function of the ecosystem. As a meta-organism, sharks offer selective niches (organs) for microorganisms that can provide benefits for their hosts. However, changes in the microbiota (due to physiological or environmental changes) can turn the symbiosis into a dysbiosis and may affect the physiology, immunity and ecology of the host. Although the importance of sharks within the ecosystem is well known, relatively few studies have focused on the microbiome aspect, especially with long-term sampling. Our study was conducted at a site of coastal development in Israel where a mixed-species shark aggregation (November-May) is observed. The aggregation includes two shark species, the dusky (Carcharhinus obscurus) and sandbar (Carcharhinus plumbeus) which segregate by sex (females and males, respectively). In order to characterize the bacterial profile and examine the physiological and ecological aspects, microbiome samples were collected from different organs (gills, skin, and cloaca) from both shark species over 3 years (sampling seasons: 2019, 2020, and 2021). The bacterial composition was significantly different between the shark individuals and the surrounding seawater and between the shark species. Additionally, differences were apparent between all the organs and the seawater, and between the skin and gills. The most dominant groups for both shark species were Flavobacteriaceae, Moraxellaceae, and Rhodobacteraceae. However, specific microbial biomarkers were also identified for each shark. An unexpected difference in the microbiome profile and diversity between the 2019-2020 and 2021 sampling seasons, revealed an increase in the potential pathogen Streptococcus. The fluctuations in the relative abundance of Streptococcus between the months of the third sampling season were also reflected in the seawater. Our study provides initial information on shark microbiome in the Eastern Mediterranean Sea. In addition, we demonstrated that these methods were also able to describe environmental episodes and the microbiome is a robust measure for long-term ecological research.

SELECTION OF CITATIONS
SEARCH DETAIL
...