Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(12): e0243738, 2020.
Article in English | MEDLINE | ID: mdl-33370319

ABSTRACT

Short term storage of extracellular vesicle (EV) solutions at +4°C is a common practice, but the stability of EVs during this procedure has not been fully understood yet. Using nanoparticle tracking analysis, we have shown that EVs isolated from the conditioned medium of HT-29 cells exhibit a pronounced concentration decrease when stored in PBS in ordinary polypropylene tubes within the range of (0.5-2.1) × 1010 particles/ml. EV losses reach 51±3% for 0.5 ml of EVs in Eppendorf 2 ml tube at 48 hours of storage at +4°C. Around 2/3 of the observed losses have been attributed to the adsorption of vesicles onto tube walls. This result shows that the lower part (up to at least 2 × 1010 particles/ml) of the practically relevant concentration range for purified EVs is prone to adsorption losses at +4°C. Total particle losses could be reduced to 18-21% at 48 hours by using either Eppendorf Protein LoBind tubes or ordinary tubes with the surface blocked with bovine serum albumin or EVs. Reduction of losses to 15% has been shown for isolated EVs dissolved in the supernatant after 100 000 g centrifugation as a model of conditioned medium. Also, a previously unknown feature of diffusion-controlled adsorption was revealed for EVs. In addition to the decrease in particle count, this process causes the predominant losses of smaller particles.


Subject(s)
Extracellular Vesicles/chemistry , Polypropylenes/chemistry , Specimen Handling/instrumentation , Adsorption , Culture Media, Conditioned/metabolism , Diffusion , Extracellular Vesicles/metabolism , HT29 Cells , Humans , Particle Size
2.
Int J Mol Sci ; 21(15)2020 Jul 26.
Article in English | MEDLINE | ID: mdl-32722584

ABSTRACT

Olivomycin A (OA) exerts its cytotoxic potency due to binding to the minor groove of the G/C-rich DNA and interfering with replication and transcription. Screening of the complete set of tetranucleotide G/C sites by electrophoretic mobility gel shift assay (EMSA) revealed that the sites containing central GC or GG dinucleotides were able to bind OA, whereas the sites with the central CG dinucleotide were not. However, studies of equilibrium OA binding in solution by fluorescence, circular dichroism and isothermal titration calorimetry failed to confirm the sequence preference of OA, indicating instead a similar type of complex and comparable affinity of OA to all G/C binding sites. This discrepancy was resolved by kinetics analysis of the drug-DNA interaction: the dissociation rate significantly differed between SGCS, SGGS and SCGS sites (S stands for G or C), thereby explaining the disintegration of the complexes during EMSA. The functional relevance of the revealed differential kinetics of OA-DNA interaction was demonstrated in an in vitro transcription assay. These findings emphasize the crucial role of kinetics in the mechanism of OA action and provide an important approach to the screening of new drug candidates.


Subject(s)
CpG Islands , DNA/chemistry , Circular Dichroism , Kinetics , Olivomycins/chemistry , Spectrometry, Fluorescence
3.
Nucleic Acids Res ; 44(21): 10031-10041, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27915287

ABSTRACT

Structure-specific ligands are convenient tools for the recognition, targeting or probing of non-canonical DNA structures. Porphyrin derivatives exhibit a preference for interaction with G-quadruplex (G4) structures over canonical duplex DNA and are able to cause photoinducible damage to nucleic acids. Here, we show that Zn(II) 5,10,15,20-tetrakis(N-carboxymethyl-4-pyridinium)porphyrin ( ZNP1: ) interacts with different conformations of the telomeric sequence d(TAGGG(TTAGGG)3) at submicromolar concentrations without any detectible disturbance of the particular fold. Among different folds, potassium (3+1) hybrid G4-structure. reveal the highest affinity to ZNP1: The pattern of guanine oxidation is specific for each telomeric DNA conformation and may serve as an additional tool for probing the G4 topology. The potassium (3+1) and parallel G4 conformations are more susceptible to light-induced oxidation than the sodium G4 conformation or double helix of the telomeric DNA. The major products of the guanine modifications are spiroiminodihydantoin (Sp) and 8-oxoguanine (8-oxoG). ZNP1: -induced oxidation of guanines results in the structural rearrangement of parallel and (3+1) G4 conformations yielding an antiparallel-like G4 conformation. The mechanism of the observed light-induced conformational changes is discussed.


Subject(s)
G-Quadruplexes , Porphyrins/chemistry , Zinc/chemistry , Binding Sites , Calorimetry/methods , Circular Dichroism , DNA/chemistry , Guanine/analogs & derivatives , Guanine/chemistry , Guanosine/analogs & derivatives , Guanosine/chemistry , Light , Magnetic Resonance Spectroscopy , Nucleic Acid Conformation , Oxidation-Reduction , Potassium/chemistry , Spectrometry, Fluorescence , Spiro Compounds/chemistry , Telomere/genetics
5.
Sci Rep ; 5: 17319, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26616523

ABSTRACT

Exosomes, small (40-100 nm) extracellular membranous vesicles, attract enormous research interest because they are carriers of disease markers and a prospective delivery system for therapeutic agents. Differential centrifugation, the prevalent method of exosome isolation, frequently produces dissimilar and improper results because of the faulty practice of using a common centrifugation protocol with different rotors. Moreover, as recommended by suppliers, adjusting the centrifugation duration according to rotor K-factors does not work for "fixed-angle" rotors. For both types of rotors--"swinging bucket" and "fixed-angle"--we express the theoretically expected proportion of pelleted vesicles of a given size and the "cut-off" size of completely sedimented vesicles as dependent on the centrifugation force and duration and the sedimentation path-lengths. The proper centrifugation conditions can be selected using relatively simple theoretical estimates of the "cut-off" sizes of vesicles. Experimental verification on exosomes isolated from HT29 cell culture supernatant confirmed the main theoretical statements. Measured by the nanoparticle tracking analysis (NTA) technique, the concentration and size distribution of the vesicles after centrifugation agree with those theoretically expected. To simplify this "cut-off"-size-based adjustment of centrifugation protocol for any rotor, we developed a web-calculator.


Subject(s)
Cell Fractionation/methods , Centrifugation/methods , Exosomes , Algorithms , HT29 Cells , Humans , Models, Theoretical
6.
Eur J Med Chem ; 85: 605-14, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25127152

ABSTRACT

Novel generations of antitumor anthraquinones are expected to be advantageous over the conventional chemotherapeutic agents. Previous structure-activity relationship studies demonstrated an importance of the positively charged side chains conjugated to anthra[2,3-b]thiophene-5,10-dione scaffolds. Exploring a role of individual side chain moieties in binding to the duplex and G-quadruplex DNA, modulation of telomerase and topoisomerase I activities, intracellular accumulation and cytostatic potency, we herein analyzed a series of reported and newly synthesized guanidine-containing derivatives of anthra[2,3-b]thiophene-5,10-dione. We found that the number of cationic side chains (namely, two) is critical for a tight interaction with human telomeric G-quadruplex (TelQ). Along with a larger drug-TelQ association constant, the telomerase attenuation by anthrathiophenediones with two basic groups in the side chains was more pronounced than by the analogs bearing one basic group. For mono-guanidinated compounds the substituent with the amino group in the side chain provided better TelQ affinity than the methylamine residue. The intracellular uptake of the mono-guanidino derivative with two side chains was >2-fold higher than the respective value for the bis(guanidino) derivative. This difference can explain a lower antiproliferative potency of bis(guanidine) containing compounds. Thus, the modifications of side chains of anthra[2,3-b]thiophene-5,10-dione differently modulated drug-target interactions and cellular effects. Nevertheless, the selected compound 11-(3-aminopropylamino)-4-(2-guanidinoethylamino)anthra[2,3-b]thiophene-5,10-dione 13 demonstrated a high affinity to TelQ and the ability to stabilize the quadruplex structure. These properties were paralleled by reasonable potency of 13 as a telomerase/topoisomerase I inhibitor and an antiproliferative agent. These results indicate that the structural elements of anthra[2,3-b]thiophene-5,10-dione derivatives can be balanced to yield a candidate for further preclinical study.


Subject(s)
G-Quadruplexes , Guanidine/chemistry , Telomerase/antagonists & inhibitors , Thiophenes/metabolism , Thiophenes/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Intracellular Space/metabolism , Mice , Thiophenes/chemistry , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/metabolism , Topoisomerase I Inhibitors/pharmacology
7.
J Biomol Struct Dyn ; 28(6): 939-47, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21469754

ABSTRACT

Viral maturation of HIV-1 involves refolding of its genomic RNA, which is believed to include a rearrangement of the SL1 stem-loop from a metastable conformation called kissing loop dimer (KD) to a stable one termed extended dimer (ED). To investigate this rearrangement in vitro we have studied the thermal melting of the RNA dimers formed by slightly modified 23-nucleotide SL1 RNA of HIV-1 Mal. Local structural changes in the RNA dimers during the melting were monitored by changes in the fluorescence of 2-aminopurine (2AP) incorporated in predetermined positions of RNA. We have shown that the stem regions of both preformed KD and ED melt in the temperature interval from 75 ° C to 90 ° C. Kissing loop interface of the KD RNA is found to be disrupted at lower temperatures from 20 ° C to 55 ° C, at which the stem regions remain intact. Conversion of the preformed KD to ED overcoming the kinetic barrier occurs between 55 ° C and 65 ° C. The melting of "loop-loop" regions in both preformed and newly formed EDs takes place around 70 ° C. Our finding that thermoinduced KD-to-ED conversion is preceded by transient dissociation of loop-loop interface disagrees with a common idea of strand exchange without disruption of loop-loop-contact.


Subject(s)
HIV-1/genetics , Inverted Repeat Sequences , Nucleic Acid Conformation , RNA, Viral/chemistry , 2-Aminopurine/chemistry , Dimerization , Fluorescence , HIV-1/metabolism , Inverted Repeat Sequences/genetics , Nucleic Acid Denaturation , RNA, Viral/genetics , RNA, Viral/metabolism , Sequence Analysis, RNA
8.
ChemMedChem ; 4(10): 1641-8, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19672918

ABSTRACT

Novel indolocarbazole derivative 12-(alpha-L-arabinopyranosyl)indolo[2,3-alpha]pyrrolo[3,4-c]carbazole-5,7-dione (AIC) demonstrated high potency (at submicromolar concentrations) against the NCI panel of human tumor cell lines and transplanted tumors in vivo. In search of tentative targets for AIC, we found that the drug formed high affinity intercalative complexes with d(AT)(20), d(GC)(20) and calf thymus DNA (binding constants (1.6x10(6)) M(-1)< or =K(a)< or =(3.3x10(6)) M(-1)). The drug intercalated preferentially into GC pairs of the duplex. Importantly, the concentrations at which AIC formed the intercalative complexes with DNA (C< or =1 microM) were identical to the concentrations that triggered p53-dependent gene reporter transactivation, the replication block, the inhibition of topoisomerase I-mediated DNA relaxation and death of HCT116 human colon carcinoma cells. We conclude that the formation of high affinity intercalative complexes with DNA is an important factor for anticancer efficacy of AIC.


Subject(s)
Antineoplastic Agents/pharmacology , Arabinose/analogs & derivatives , Carbazoles/pharmacology , DNA/drug effects , Intercalating Agents/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Apoptosis , Arabinose/chemistry , Arabinose/pharmacology , Carbazoles/chemistry , Cell Line, Tumor , DNA/chemistry , DNA/metabolism , Female , Humans , Intercalating Agents/chemistry , Intercalating Agents/metabolism , Mice , Mice, Inbred Strains , Spectrometry, Fluorescence , Xenograft Model Antitumor Assays
9.
J Biomol Struct Dyn ; 20(6): 789-99, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12744708

ABSTRACT

Oligonucleotides 3'-d(GT)(5)-(CH(2)CH(2)O)(3)-d(GT)(5)-3' (parGT), containing GT repeats present in the telomeric DNA from Saccharomyces cerevisiae, had been demonstrated to form bimolecular structure, GT-quadruplex (qGT) [O. F. Borisova et al. FEBS Letters 306, 140-142 (1992)]. Four d(GT)(5) strands of the GT-quadruplex are parallel and form five G-quartets while thymines are bulged out. The four GT repeats when flanked by guanines, 3'-dG(TG)(4)G-(CH(2)CH(2)O)(3)-dG(GT)(4)G-3' (hp-GT), had been shown to form a novel parallel-stranded (ps) double helix with G.G and T.T base pairs (hp-GT ps-DNA) [A. K. Shchyolkina et al. J. Biomol. Struct. Dyn. 18, 493-503 (2001)]. In the present study the intercalator ethidium bromide (Et) was used for probing the two structures. The mode of Et binding and its effect on thermostability of qGT and hp-GT were compared. The quantum yield (q) and the fluorescence lifetime (tau) of Et:qGT (q = 0.15 +/- 0.01 and tau = 24 +/- 1 ns) and Et:hp-GT (q = 0.10 +/- 0.01 and tau = 16.5 +/- 1 ns) indicative of intercalation mode of Et binding were determined. Et binding to qGT was found to be cooperative with corresponding coefficient omega = 3.9 +/- 0.1 and the binding constant Kappa = (6.4 +/- 0.1).10(4) M(-1). The maximum number of Et molecules intercalating into GT-quadruplex is as high as twice the number of innerspaces between G-quartets (eight in our case). The data conform to the model of Et association with GT-quadruplex suggested earlier [O. F. Borisova et al. Mol. Biol. (Russ) 35, 732-739 (2001)]. The anticooperative type of Et binding was observed in case of hp-GT ps-DNA, with the maximum number of bound Et molecules, N = 4 / 5, and the association constant Kappa = (1.5 +/- 0.1).10(5) M(-1). Thermodynamic parameters of formation of Et:qGT and EtBr:hp-GT complexes were calculated from UV thermal denaturation profiles.


Subject(s)
DNA/chemistry , Ethidium/metabolism , Fluorescent Dyes/metabolism , Telomere/chemistry , Animals , Base Sequence , DNA/metabolism , G-Quadruplexes , Guanine/chemistry , Molecular Sequence Data , Oligonucleotides/metabolism , Spectrophotometry, Ultraviolet , Temperature , Thermodynamics , Thymine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...