Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 22(2): 243-255, 2019 02.
Article in English | MEDLINE | ID: mdl-30617258

ABSTRACT

Autism spectrum disorder (ASD) is thought to emerge during early cortical development. However, the exact developmental stages and associated molecular networks that prime disease propensity are elusive. To profile early neurodevelopmental alterations in ASD with macrocephaly, we monitored subject-derived induced pluripotent stem cells (iPSCs) throughout the recapitulation of cortical development. Our analysis revealed ASD-associated changes in the maturational sequence of early neuron development, involving temporal dysregulation of specific gene networks and morphological growth acceleration. The observed changes tracked back to a pathologically primed stage in neural stem cells (NSCs), reflected by altered chromatin accessibility. Concerted over-representation of network factors in control NSCs was sufficient to trigger ASD-like features, and circumventing the NSC stage by direct conversion of ASD iPSCs into induced neurons abolished ASD-associated phenotypes. Our findings identify heterochronic dynamics of a gene network that, while established earlier in development, contributes to subsequent neurodevelopmental aberrations in ASD.


Subject(s)
Autism Spectrum Disorder/genetics , Gene Regulatory Networks , Inhibitory Postsynaptic Potentials/physiology , Nerve Net/physiopathology , Neurons/physiology , Autism Spectrum Disorder/pathology , Autism Spectrum Disorder/physiopathology , Humans , Induced Pluripotent Stem Cells/pathology , Neural Stem Cells/pathology , Neurons/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...