Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Poult Sci ; 103(3): 103393, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38320392

ABSTRACT

Climate change is one of the most significant challenges facing the sustainability of global poultry production. Stress resulting from extreme temperature swings, including cold snaps, is a major concern for food production birds. Despite being well-documented in mammals, the effect of environmental stress on enteric neurophysiology and concomitant impact on host-microbiome interactions remains poorly understood in birds. As early life stressors may imprint long-term adaptive changes in the host, the present study sought to determine whether cold temperature stress, a prominent form of early life stress in chickens, elicits changes in enteric stress-related neurochemical concentrations that coincide with compositional and functional changes in the microbiome that persist into the later life of the bird. Chicks were, or were not, subjected to cold ambient temperature stress during the first week post-hatch and then remained at normal temperature for the remainder of the study. 16S rRNA gene and shallow shotgun metagenomic analyses demonstrated taxonomic and functional divergence between the cecal microbiomes of control and cold stressed chickens that persisted for weeks following cessation of the stressor. Enteric concentrations of serotonin, norepinephrine, and other monoamine neurochemicals were elevated (P < 0.05) in both cecal tissue and luminal content of cold stressed chickens. Significant (P < 0.05) associations were identified between cecal neurochemical concentrations and microbial taxa, suggesting host enteric neurochemical responses to environmental stress may shape the cecal microbiome. These findings demonstrate for the first time that early life exposure to environmental temperature stress can change the developmental trajectory of both the chicken cecal microbiome and host neuroendocrine enteric physiology. As many neurochemicals serve as interkingdom signaling molecules, the relationships identified here could be exploited to control the impact of climate change-driven stress on avian enteric host-microbe interactions.


Subject(s)
Chickens , Microbiota , Animals , Cold-Shock Response , RNA, Ribosomal, 16S , Metagenome , Mammals
2.
Poult Sci ; 103(2): 103368, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38157787

ABSTRACT

Poultry act as a major reservoir host for Salmonella and Campylobacter spp., the 2 leading causes of foodborne illnesses globally and in the United States. Preharvest stage interventions to reduce foodborne pathogen carriage in poultry are increasingly informed by consumer preference for antibiotic-free poultry production. The in-feed inclusion of plant-derived antimicrobial compounds is a promising antibiotic alternative strategy to reduce foodborne pathogen load in the broiler chicken gut. Yet, the fate of these phytochemicals through the broiler chicken gastrointestinal tract is unknown. Likewise, while in-feed phytochemicals have been widely demonstrated in challenge models to reduce foodborne pathogen carriage, little is known regarding efficacy to curb natural routes of infection. As such, the aim of the present study was 2-fold. We sought to determine the concentrations of 2 phytochemicals, trans-cinnamaldehyde and caprylic acid, in each region of the chicken gastrointestinal tract following their in-feed inclusion over a 6-wk production period. In addition, we investigated how the in-feed provision of these phytochemicals may protect against environmental acquisition of Campylobacter jejuni and Salmonella spp. Trans-cinnamaldehyde and caprylic acid were detected in crop, gizzard, duodenal, jejunal, and ileal contents. Crop and gizzard concentrations were not significantly (P > 0.05) different. A significant (P < 0.05) decrease in phytochemical concentration was observed in intestinal regions compared to crop and gizzard. Trans-cinnamaldehyde was consistently identified in cecal and colon contents, while caprylic acid was not detectable in these regions. Trans-cinnamaldehyde and caprylic acid were found to reduce (P < 0.05) Salmonella load. Together, our data establish that the in-feed addition of trans-cinnamaldehyde and caprylic acid, 2 phytochemicals that have previously been shown to exert antimicrobial activity against poultry-associated foodborne pathogens, results in detectable concentrations in the broiler chicken gastrointestinal tract. By providing researchers with a gastrointestinal region-by-region map of phytochemical concentrations, the present study is expected to inform the choice of in-feed phytochemicals targeting foodborne pathogen carriage in the broiler chicken gastrointestinal tract.


Subject(s)
Acrolein/analogs & derivatives , Campylobacter Infections , Campylobacter jejuni , Caprylates , Poultry Diseases , Animals , Chickens , Anti-Bacterial Agents , Phytochemicals , Campylobacter Infections/veterinary , Poultry Diseases/prevention & control
3.
Sci Rep ; 13(1): 5947, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37045932

ABSTRACT

Bacterial Chondronecrosis with Osteomyelitis (BCO) is a specific cause of lameness in commercial fast-growing broiler (meat-type) chickens and represents significant economic, health, and wellbeing burdens. However, the molecular mechanisms underlying the pathogenesis remain poorly understood. This study represents the first comprehensive characterization of the proximal tibia proteome from healthy and BCO chickens. Among a total of 547 proteins identified, 222 were differentially expressed (DE) with 158 up- and 64 down-regulated proteins in tibia of BCO vs. normal chickens. Biological function analysis using Ingenuity Pathways showed that the DE proteins were associated with a variety of diseases including cell death, organismal injury, skeletal and muscular disorder, immunological and inflammatory diseases. Canonical pathway and protein-protein interaction network analysis indicated that these DE proteins were involved in stress response, unfolded protein response, ribosomal protein dysfunction, and actin cytoskeleton signaling. Further, we identified proteins involved in bone resorption (osteoclast-stimulating factor 1, OSFT1) and bone structural integrity (collagen alpha-2 (I) chain, COL2A1), as potential key proteins involved in bone attrition. These results provide new insights by identifying key protein candidates involved in BCO and will have significant impact in understanding BCO pathogenesis.


Subject(s)
Bacterial Infections , Osteomyelitis , Poultry Diseases , Animals , Necrosis/pathology , Tibia/pathology , Chickens , Lameness, Animal/etiology , Proteomics , Poultry Diseases/microbiology , Housing, Animal , Osteomyelitis/microbiology , Bacteria , Bacterial Infections/microbiology
4.
Pathogens ; 10(8)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34451506

ABSTRACT

Necrotic enteritis (NE), mainly induced by the pathogens of Clostridium perfringens and coccidia, causes huge economic losses with limited intervention options in the poultry industry. This study investigated the role of specific bile acids on NE development. Day-old broiler chicks were assigned to six groups: noninfected, NE, and NE with four bile diets of 0.32% chicken bile, 0.15% commercial ox bile, 0.15% lithocholic acid (LCA), or 0.15% deoxycholic acid (DCA). The birds were infected with Eimeria maxima at day 18 and C. perfringens at day 23 and 24. The infected birds developed clinical NE signs. The NE birds suffered severe ileitis with villus blunting, crypt hyperplasia, epithelial line disintegration, and massive immune cell infiltration, while DCA and LCA prevented the ileitis histopathology. NE induced severe body weight gain (BWG) loss, while only DCA prevented NE-induced BWG loss. Notably, DCA reduced the NE-induced inflammatory response and the colonization and invasion of C. perfringens compared to NE birds. Consistently, NE reduced the total bile acids in the ileal digesta, while dietary DCA and commercial bile restored it. Together, this study showed that DCA and LCA reduced NE histopathology, suggesting that secondary bile acids, but not total bile acid levels, play an essential role in controlling the enteritis.

5.
PLoS One ; 16(4): e0250296, 2021.
Article in English | MEDLINE | ID: mdl-33909627

ABSTRACT

Salmonella Enteritidis is an intracellular foodborne pathogen that has developed multiple mechanisms to alter poultry intestinal physiology and infect the gut. Short chain fatty acid butyrate is derived from microbiota metabolic activities, and it maintains gut homeostasis. There is limited understanding on the interaction between S. Enteritidis infection, butyrate, and host intestinal response. To fill this knowledge gap, chicken macrophages (also known as HTC cells) were infected with S. Enteritidis, treated with sodium butyrate, and proteomic analysis was performed. A growth curve assay was conducted to determine sub-inhibitory concentration (SIC, concentration that do not affect bacterial growth compared to control) of sodium butyrate against S. Enteritidis. HTC cells were infected with S. Enteritidis in the presence and absence of SIC of sodium butyrate. The proteins were extracted and analyzed by tandem mass spectrometry. Our results showed that the SIC was 45 mM. Notably, S. Enteritidis-infected HTC cells upregulated macrophage proteins involved in ATP synthesis through oxidative phosphorylation such as ATP synthase subunit alpha (ATP5A1), ATP synthase subunit d, mitochondrial (ATP5PD) and cellular apoptosis such as Cytochrome-c (CYC). Furthermore, sodium butyrate influenced S. Enteritidis-infected HTC cells by reducing the expression of macrophage proteins mediating actin cytoskeletal rearrangements such as WD repeat-containing protein-1 (WDR1), Alpha actinin-1 (ACTN1), Vinculin (VCL) and Protein disulfide isomerase (P4HB) and intracellular S. Enteritidis growth and replication such as V-type proton ATPase catalytic subunit A (ATPV1A). Interestingly, sodium butyrate increased the expression of infected HTC cell protein involving in bacterial killing such as Vimentin (VIM). In conclusion, sodium butyrate modulates the expression of HTC cell proteins essential for S. Enteritidis invasion.


Subject(s)
Avian Proteins/genetics , Butyric Acid/pharmacology , Host-Pathogen Interactions/genetics , Macrophages/drug effects , Poultry Diseases/genetics , Salmonella Infections, Animal/genetics , Actinin/genetics , Actinin/metabolism , Animals , Avian Proteins/metabolism , Chickens , Cytochromes c/genetics , Cytochromes c/metabolism , Gene Expression Regulation/drug effects , Isoenzymes/genetics , Isoenzymes/metabolism , Macrophages/cytology , Macrophages/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Molecular Sequence Annotation , Oxidative Phosphorylation/drug effects , Poultry Diseases/metabolism , Poultry Diseases/microbiology , Primary Cell Culture , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Salmonella Infections, Animal/metabolism , Salmonella Infections, Animal/microbiology , Salmonella enteritidis/growth & development , Salmonella enteritidis/pathogenicity , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Vimentin/genetics , Vimentin/metabolism , Vinculin/genetics , Vinculin/metabolism
6.
Poult Sci ; 100(3): 100944, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33652538

ABSTRACT

Microbial endocrinology, which is the study of neurochemical-based host-microbe interaction, has demonstrated that neurochemicals affect bacterial pathogenicity. A variety of neurochemicals, including norepinephrine, were shown to enhance intestinal epithelial colonization by Campylobacter jejuni. Yet, little is known whether serotonin, an abundant neurochemical produced in the gut, affects the physiology of C. jejuni and its interaction with the host gut epithelium. Considering the avian gut produces serotonin and serves as a major reservoir of C. jejuni, we sought to investigate whether serotonin can affect C. jejuni physiology and gut epithelial colonization in vitro. We first determined the biogeographical distribution of serotonin concentrations in the serosa, mucosa, as well as the luminal contents of the broiler chicken ileum, cecum, and colon. Serotonin concentrations were greater (P < 0.05) in the mucosa and serosa compared to the luminal content in each gut region examined. Among the ileum, colon, and cecum, the colon was found to contain the greatest concentrations of serotonin. We then investigated whether serotonin may effect changes in C. jejuni growth and motility in vitro. The C. jejuni used in this study was previously isolated from the broiler chicken ceca. Serotonin at concentrations of 1mM or below did not elicit changes in growth (P > 0.05) or motility (P > 0.05) of C. jejuni. Next, we utilized liquid chromatography tandem mass spectrometry to investigate whether serotonin affected the proteome of C. jejuni. Serotonin caused (P < 0.05) the downregulation of a protein (CJJ81176_1037) previously identified to be essential in C. jejuni colonization. Based on our findings, we evaluated whether serotonin would cause a functional change in C. jejuni adhesion and invasion of the HT29MTX-E12 colonic epithelial cell line. Serotonin was found to cause a reduction in adhesion (P < 0.05) but not invasion (P > 0.05). Together, we have identified a potential role for serotonin in modulating C. jejuni colonization in the gut in vitro. Further studies are required to understand the practical implications of these findings for the control of C. jejuni enteric colonization in vivo.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Gastrointestinal Microbiome , Poultry Diseases , Animals , Campylobacter Infections/veterinary , Cecum , Chickens , Epithelium , Serotonin
7.
J Cell Sci ; 134(5)2021 02 25.
Article in English | MEDLINE | ID: mdl-33414165

ABSTRACT

The fungus Magnaporthe oryzae uses a specialized pressure-generating infection cell called an appressorium to break into rice leaves and initiate disease. Appressorium functionality is dependent on the formation of a cortical septin ring during its morphogenesis, but precisely how this structure assembles is unclear. Here, we show that F-actin rings are recruited to the circumference of incipient septin disc-like structures in a pressure-dependent manner, and that this is necessary for their contraction and remodeling into rings. We demonstrate that the structural integrity of these incipient septin discs requires both an intact F-actin and microtubule cytoskeleton and provide fundamental new insight into their functional organization within the appressorium. Lastly, using proximity-dependent labeling, we identify the actin modulator coronin as a septin-proximal protein and show that F-actin-mediated septin disc-to-ring remodeling is perturbed in the genetic absence of coronin. Taken together, our findings provide new insight into the dynamic remodeling of infection-specific higher-order septin structures in a globally significant fungal plant pathogen.


Subject(s)
Magnaporthe , Oryza , 4-Butyrolactone/analogs & derivatives , Actins/genetics , Ascomycota , Cytoskeleton/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Magnaporthe/genetics , Magnaporthe/metabolism , Oryza/metabolism , Plant Diseases , Septins/genetics , Septins/metabolism
8.
Mass Spectrom Rev ; 40(3): 236-254, 2021 05.
Article in English | MEDLINE | ID: mdl-32530096

ABSTRACT

Chlorinated dioxins are labeled and recognized by both the World Health Organization and the United Nations Environmental Programme (UNEP) as "persistent organic pollutants". Their potential for high toxicity is one of the primary factors behind intense public and regulatory scrutiny and the need to measure the compounds at very low limits, specifically the isomer 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). This article highlights the early mass spectrometry methods to investigate, detect, confirm, and quantify chlorinated dioxins and the initial applications involving human biomonitoring, as attempts were made to attribute health effects to TCDD exposure. This effort represented a complex and difficult scientific response to the pressing need to investigate expected exposures and alleged subsequent medical effects, which in the case of the Viet Nam veterans was being attempted a decade or more after their exposure. It is noteworthy that this method and its development touched on delicate issues involving human subjects, war veterans, environmental contamination, and was difficult not only scientifically, but for ethical and political reasons as well. Stable-isotope dilution with analysis by gas chromatography/high-resolution mass spectrometry (GC/HRMS) became the method of choice because of its ability to monitor characteristic ions and isotope ratios to quantify and qualify/confirm the analyte in the presence of coextracting and coeluting interferences at these low levels with the highest possible confidence. This method was rigorously tested and validated before it was used to discover and monitor levels in the environment and in various populations at then unprecedented low levels. These early studies demonstrated the feasibility of monitoring dioxins in humans even decades after exposure, and led to the detection of 2,3,7,8-TCDD in the general population as well as specific overexposed populations. These studies also provided strong evidence regarding the origins of the 2,3,7,8-isomer in the environment. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.


Subject(s)
Dioxins/analysis , Dioxins/toxicity , Environmental Pollutants/analysis , Mass Spectrometry/methods , Animals , Dioxins/pharmacokinetics , Environmental Pollutants/pharmacokinetics , Environmental Pollutants/toxicity , Gas Chromatography-Mass Spectrometry/methods , Half-Life , Humans , Milk, Human/chemistry , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Polychlorinated Dibenzodioxins/analysis , Primates , Veterans , Vietnam
9.
Rapid Commun Mass Spectrom ; 35 Suppl 1: e8349, 2021 Jan.
Article in English | MEDLINE | ID: mdl-30421829

ABSTRACT

RATIONALE: Assessing the utility of vacuum matrix-assisted ionization (MAI) for the direct and rapid analysis of lipids in complex samples with emphasis on bacterial taxonomy. METHODS: Matrix-assisted ionization Fourier transform mass spectrometry (MAI-FTMS) was used to characterize polar and non-polar lipids in mixtures. RESULTS: For non-polar lipid triacylglycerols (TAGs), MAI-FTMS produced lipid-specific ions for eight different edible oils and allowed these oils to be identified based on their MAI-FTMS profiles. For polar lipids from bacteria, MAI-FTMS of crude lipid extracts allowed taxonomic identification of eight blind-coded samples based on taxonomy-specific phospholipid profiles. MAI produced results comparable and complementary to benchmark MALDI and ESI methods currently used for characterization of polar and non-polar lipids in the same mixtures. CONCLUSIONS: The newly developed MAI technique is a rapid, simple and complementary method for the characterization of polar and non-polar lipids in complex mixtures.


Subject(s)
Lipids , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Bacteria/chemistry , Fourier Analysis , Lipids/analysis , Lipids/chemistry
10.
Mol Cell Biochem ; 476(2): 1303-1312, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33301106

ABSTRACT

The sheared avian intestinal villus-crypts exhibit high tendency to self-repair and develop enteroids in culture. Presuming that this transition process involves differential biomolecular changes, we employed matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) to find whether there were differences in the spectral profiles of sheared villi versus the enteroids, assessed in the mass range of 2-18 kDa. The results showed substantial differences in the intensities of the spectral peaks, one particularly corresponding to the mass of 4963 Da, which was significantly low in the sheared villus-crypts compared with the enteroids. Based on our previous results with other avian tissues and further molecular characterization by LC-ESI-IT-TOF-MS, and multiple reaction monitoring (MRM), the peak was identified to be thymosin ß4 (Tß4), a ubiquitously occurring regulatory peptide implicated in wound healing process. The identity of the peptide was further confirmed by immunohistochemistry which showed it to be present in a very low levels in the sheared villi but replete in the enteroids. Since Tß4 sequesters G-actin preventing its polymerization to F-actin, we compared the changes in F-actin by its immunohistochemical localization that showed no significant differences between the sheared villi and enteroids. We propose that depletion of Tß4 likely precedes villous reparation process. The possible mechanism for the differences in Tß4 profile in relation to the healing of the villus-crypts to developing enteroids is discussed.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Intestinal Mucosa/cytology , Mass Spectrometry/methods , Proteome/metabolism , Thymosin/metabolism , Wound Healing , Animals , Cell Culture Techniques/methods , Chickens , Intestinal Mucosa/metabolism , Proteome/analysis
11.
Sci Rep ; 10(1): 22282, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33335251

ABSTRACT

Several agonists to CD40 have shown to induce acquired immune responses. Here, we developed and evaluated the rolling circle amplification (RCA) products that are based on anti-CD40 DNA aptamers as a novel vaccine adjuvant. First, we developed DNA aptamers with specific binding affinity to chicken CD40 extra domain (chCD40ED). Next, we prepared the RCA products that consist of these aptamers to increase the spanning space and overall binding affinity to chCD40ED. Using 8 DNA aptamer candidates, 4 aptamer-based RCA products (aptamer RCAs) were generated, each consisting of two distinct aptamers. We demonstrated that all 4 aptamer RCAs significantly induced the signal transduction in chicken HD11 macrophage cell line (p < 0.05). Finally, we conjugated one of the aptamer RCAs (Aptamer RCA II) to M2e epitope peptide of influenza virus as a model hapten, and the immune complex was injected to chickens. Aptamer RCA II stimulated anti-M2e IgG antibody production to the level significantly higher as compared to the control (M2e epitope alone; p < 0.05). The results of our work suggest that aptamer RCA is a novel platform to boost the efficacy of vaccines, which might find broad applications to other antigens beyond M2e epitope evaluated in this study using chicken infection model.


Subject(s)
Aptamers, Nucleotide/immunology , CD40 Antigens/immunology , Immunoglobulin G/immunology , Orthomyxoviridae/immunology , Adaptive Immunity/drug effects , Adjuvants, Immunologic , Animals , Antigens/immunology , Aptamers, Nucleotide/genetics , Cell Line , Chickens/immunology , Chickens/virology , Epitopes/immunology , Haptens/immunology , Humans , Immunoconjugates/immunology , Immunoconjugates/pharmacology , Immunoglobulin G/pharmacology , Macrophages/immunology , Orthomyxoviridae/drug effects , Peptides/immunology , Vaccines/immunology
12.
Front Genet ; 11: 531, 2020.
Article in English | MEDLINE | ID: mdl-32595696

ABSTRACT

Maternal dietary supplementation of n-3 polyunsaturated fatty acids (n-3 PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), is considered to play positive roles in fetal neuro system development. However, maternal n-3 PUFAs may induce molecular reprogramming of uncommitted fetal myoblasts into adipocyte phenotype, in turn affecting lipid metabolism and energy expenditure of the offspring. The objective of this in vitro study was to investigate the combined effects of EPA and DHA on C2C12 cells undergoing brown adipogenic differentiation. C2C12 myoblasts were cultured to confluency and then treated with brown adipogenic differentiation medium with and without 50 µM EPA and 50 µM DHA. After differentiation, mRNA and protein samples were collected. Gene expression and protein levels were analyzed by real-time PCR and western blot. General Proteomics analysis was conducted using mass spectrometric evaluation. The effect of EPA and DHA on cellular oxygen consumption was measured using a Seahorse XFP Analyzer. Cells treated with n-3 PUFAs had significantly less (P < 0.05) expression of the brown adipocyte marker genes PGC1α, DIO2, and UCP3. Expression of mitochondrial biogenesis-related genes TFAM, PGC1α, and PGC1ß were significantly downregulated (P < 0.05) by n-3 PUFAs treatment. Expression of mitochondrial electron transportation chain (ETC)-regulated genes were significantly inhibited (P < 0.05) by n-3 PUFAs, including ATP5J2, COX7a1, and COX8b. Mass spectrometric and western blot evaluation showed protein levels of enzymes which regulate the ETC and Krebs cycle, including ATP synthase α and ß (F1F0 complex), citrate synthase, succinate CO-A ligase, succinate dehydrogenase (complex II), ubiquinol-cytochrome c reductase complex subunits (complex III), aconitate hydratase, cytochrome c, and pyruvate carboxylase were all decreased in the n-3 PUFAs group (P < 0.05). Genomic and proteomic changes were accompanied by mitochondrial dysfunction, represented by significantly reduced oxygen consumption rate, ATP production, and proton leak (P < 0.05). This study suggested that EPA and DHA may alter the BAT fate of myoblasts by inhibiting mitochondrial biogenesis and activity and induce white-like adipogenesis, shifting the metabolism from lipid oxidation to synthesis.

13.
BMC Vet Res ; 16(1): 179, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32503669

ABSTRACT

BACKGROUND: Three-dimensional models of cell culture such as organoids and mini organs accord better advantage over regular cell culture because of their ability to simulate organ functions hence, used for disease modeling, metabolic research, and the development of therapeutics strategies. However, most advances in this area are limited to mammalian species with little progress in others such as poultry where it can be deployed to study problems of agricultural importance. In the course of enterocyte culture in chicken, we observed that intestinal mucosal villus-crypts self-repair and form spheroid-like structures which appear to be useful as ex vivo models to study enteric physiology and diseases. RESULTS: The villus-crypts harvested from chicken intestinal mucosa were cultured to generate enteroids, purified by filtration then re cultured with different chemicals and growth factors to assess their response based on their morphological dispositions. Histochemical analyses using marker antibodies and probes showed the enteroids consisting different cell types such as epithelial, goblet, and enteroendocrine cells typical to villi and retain functional characteristics of intestinal mucosa. CONCLUSIONS: We present a simple procedure to generate avian crypt-villous enteroids containing different cell types. Because the absorptive cells are functionally positioned outwards, similar to the luminal enterocytes, the cells have better advantages to interact with the factors present in the culture medium. Thus, the enteroids have the potential to study the physiology, metabolism, and pathology of the intestinal villi and can be useful for preliminary screenings of the factors that may affect gut health in a cost-effective manner and reduce the use of live animals.


Subject(s)
Cell Culture Techniques/veterinary , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Animals , Cell Culture Techniques/methods , Chickens , Enterocytes/cytology , Epithelial Cells/cytology , Intercellular Signaling Peptides and Proteins/pharmacology , Male , Organoids/cytology , Organoids/drug effects
14.
Front Plant Sci ; 11: 232, 2020.
Article in English | MEDLINE | ID: mdl-32194606

ABSTRACT

AtNHR2A (Arabidopsis thaliana nonhost resistance 2A) and AtNHR2B (Arabidopsis thaliana nonhost resistance 2B) are two proteins that participate in nonhost resistance, a broad-spectrum mechanism of plant immunity that protects plants against the majority of potential pathogens. AtNHR2A and AtNHR2B are localized to the cytoplasm, chloroplasts, and other subcellular compartments of unknown identity. The multiple localizations of AtNHR2A and AtNHR2B suggest that these two proteins are highly dynamic and versatile, likely participating in multiple biological processes. In spite of their importance, the specific functions of AtNHR2A and AtNHR2B have not been elucidated. Thus, to aid in the functional characterization of these two proteins and identify the biological processes in which these proteins operate, we used immunoprecipitation coupled with mass spectrometry (IP-MS) to identify proteins interacting with AtNHR2A and AtNHR2B and to generate their interactome network. Further validation of three of the identified proteins provided new insights into specific pathways and processes related to plant immunity where AtNHR2A and AtNHR2B participate. Moreover, the comprehensive analysis of the AtNHR2A- and AtNHR2B-interacting proteins using published empirical information revealed that the functions of AtNHR2A and AtNHR2B are not limited to plant immunity but encompass other biological processes.

15.
J Anim Sci Biotechnol ; 11: 37, 2020.
Article in English | MEDLINE | ID: mdl-32190299

ABSTRACT

BACKGROUND: Clostridium perfringens-induced chicken necrotic enteritis (NE) is responsible for substantial economic losses worldwide annually. Recently, as a result of antibiotic growth promoter prohibition, the prevalence of NE in chickens has reemerged. This study was aimed to reduce NE through titrating dietary deoxycholic acid (DCA) as an effective antimicrobial alternative. MATERIALS AND METHODS: Day-old broiler chicks were assigned to six groups and fed diets supplemented with 0 (basal diet), 0.8, 1.0 and 1.5 g/kg (on top of basal diet) DCA. The birds were challenged with Eimeria maxima (20,000 oocysts/bird) at d 18 and C. perfringens (109 CFU/bird per day) at d 23, 24, and 25 to induce NE. The birds were sacrificed at d 26 when ileal tissue and digesta were collected for analyzing histopathology, mRNA accumulation and C. perfringens colonization by real-time PCR, targeted metabolomics of bile acids, fluorescence in situ hybridization (FISH), or terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. RESULTS: At the cellular level, birds infected with E. maxima and C. perfringens developed subclinical NE and showed shortening villi, crypt hyperplasia and immune cell infiltration in ileum. Dietary DCA alleviated the NE-induced ileal inflammation in a dose-dependent manner compared to NE control birds. Consistent with the increased histopathological scores, subclinical NE birds suffered body weight gain reduction compared to the uninfected birds, an effect attenuated with increased doses of dietary DCA. At the molecular level, the highest dose of DCA at 1.5 g/kg reduced C. perfringens luminal colonization compared to NE birds using PCR and FISH. Furthermore, the dietary DCA reduced subclinical NE-induced intestinal inflammatory gene expression and cell apoptosis using PCR and TUNEL assays. Upon further examining ileal bile acid pool through targeted metabolomics, subclinical NE reduced the total bile acid level in ileal digesta compared to uninfected birds. Notably, dietary DCA increased total bile acid and DCA levels in a dose-dependent manner compared to NE birds. CONCLUSION: These results indicate that DCA attenuates NE-induced intestinal inflammation and bile acid reduction and could be an effective antimicrobial alternative against the intestinal disease.

16.
Am J Physiol Cell Physiol ; 318(2): C289-C303, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31800296

ABSTRACT

Glucose-regulated protein 75 (GRP75) was first characterized in mammals as a heat shock protein-70 (HSP70) family stress chaperone based on its sequence homology. Extensive studies in mammals showed that GRP75 is induced by various stressors such as glucose deprivation, oxidative stress, and hypoxia, although it remained unresponsive to the heat shock. Such investigations are scarce in avian (nonmammalian) species. We here identified chicken GRP75 by using immunoprecipitation assay integrated with LC-MS/MS, and found that its amino acid sequence is conserved with high homology (52.5%) to the HSP70 family. Bioinformatics and 3D-structure prediction indicate that, like most HSPs, chicken GRP75 has two principal domains (the NH2-terminal ATPase and COOH-terminal region). Immunofluorescence staining shows that GRP75 is localized predominantly in the avian myoblast and hepatocyte mitochondria. Heat stress exposure upregulates GRP75 expression in a species-, genotype-, and tissue-specific manner. Overexpression of GRP75 reduces avian cell viability, and blockade of GRP75 by its small molecular inhibitor MKT-077 rescues avian cell viability during heat stress. Taken together, this is the first evidence showing that chicken GRP75, unlike its mammalian ortholog, is responsive to heat shock and plays a key role in cell survival/death pathways. Since modern avian species have high metabolic rates and are sensitive to high environmental temperature, GRP75 could open new vistas in mechanistic understanding of heat stress responses and thermotolerance in avian species.


Subject(s)
Glucose/metabolism , Heat-Shock Response/drug effects , Amino Acid Sequence , Animals , Cell Line , Cell Survival/drug effects , Chickens , Chromatography, Liquid/methods , HSP70 Heat-Shock Proteins/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Male , Membrane Proteins/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Myoblasts/drug effects , Myoblasts/metabolism , Pyridines/pharmacology , Quail , Small Molecule Libraries/pharmacology , Tandem Mass Spectrometry/methods , Thiazoles/pharmacology , Up-Regulation/drug effects
17.
Front Microbiol ; 10: 1837, 2019.
Article in English | MEDLINE | ID: mdl-31456771

ABSTRACT

Campylobacter jejuni is the leading cause of human foodborne illness globally, and is strongly linked with the consumption of contaminated poultry products. Several studies have shown that C. jejuni can form sanitizer tolerant biofilm leading to product contamination, however, limited research has been conducted to develop effective control strategies against C. jejuni biofilms. This study investigated the efficacy of three generally recognized as safe status phytochemicals namely, trans-cinnamaldehyde (TC), eugenol (EG), or carvacrol (CR) in inhibiting C. jejuni biofilm formation and inactivating mature biofilm on common food contact surfaces at 20 and 37°C. In addition, the effect of phytochemicals on biofilm architecture and expression of genes and proteins essential for biofilm formation was evaluated. For the inhibition study, C. jejuni was allowed to form biofilms either in the presence or absence of sub-inhibitory concentrations of TC (0.75 mM), EG (0.61 mM), or CR (0.13 mM) for 48 h and the biofilm formation was quantified at 24-h interval. For the inactivation study, C. jejuni biofilms developed at 20 or 37°C for 48 h were exposed to the phytochemicals for 1, 5, or 10 min and surviving C. jejuni in the biofilm were enumerated. All phytochemicals reduced C. jejuni biofilm formation as well as inactivated mature biofilm on polystyrene and steel surface at both temperatures (P < 0.05). The highest dose of TC (75.64 mM), EG (60.9 mM) and CR (66.56 mM) inactivated (>7 log reduction) biofilm developed on steel (20°C) within 5 min. The genes encoding for motility systems (flaA, flaB, and flgA) were downregulated by all phytochemicals (P < 0.05). The expression of stress response (cosR, ahpC) and cell surface modifying genes (waaF) was reduced by EG. LC-MS/MS based proteomic analysis revealed that TC, EG, and CR significantly downregulated the expression of NapA protein required for oxidative stress response. The expression of chaperone protein DnaK and bacterioferritin required for biofilm formation was reduced by TC and CR. Scanning electron microscopy revealed disruption of biofilm architecture and loss of extracellular polymeric substances after treatment. Results suggest that TC, EG, and CR could be used as a natural disinfectant for controlling C. jejuni biofilms in processing areas.

18.
PLoS One ; 14(6): e0218019, 2019.
Article in English | MEDLINE | ID: mdl-31181089

ABSTRACT

Due to its tropical origin and adaptation, rice is significantly impacted by cold stress, and consequently sustains large losses in growth and productivity. Currently, rice is the second most consumed cereal in the world and production losses caused by extreme temperature events in the context of "major climatic changes" can have major impacts on the world economy. We report here an analysis of rice genotypes in response to low-temperature stress, studied through physiological gas-exchange parameters, biochemical changes in photosynthetic pigments and antioxidants, and at the level of gene and protein expression, towards an understanding and identification of multiple low-temperature tolerance mechanisms. The first effects of cold stress were observed on photosynthesis among all genotypes. However, the tropical japonica genotypes Secano do Brazil and Cypress had a greater reduction in gas exchange parameters like photosynthesis and water use efficiency in comparison to the temperate japonica Nipponbare and M202 genotypes. The analysis of biochemical profiles showed that despite the impacts of low temperature on tolerant plants, they quickly adjusted to maintain their cellular homeostasis by an accumulation of antioxidants and osmolytes like phenolic compounds and proline. The cold tolerant and sensitive genotypes showed a clear difference in gene expression at the transcript level for OsGH3-2, OsSRO1a, OsZFP245, and OsTPP1, as well as for expression at the protein level for LRR-RLKs, bHLH, GLYI, and LTP1 proteins. This study exemplifies the cold tolerant features of the temperate japonica Nipponbare and M202 genotypes, as observed through the analysis of physiological and biochemical responses and the associated changes in gene and protein expression patterns. The genes and proteins showing differential expression response are notable candidates towards understanding the biological pathways affected in rice and for engineering cold tolerance, to generate cultivars capable of maintaining growth, development, and reproduction under cold stress. We also propose that the mechanisms of action of the genes analyzed are associated with the tolerance response.


Subject(s)
Cold-Shock Response/genetics , Cold-Shock Response/physiology , Oryza/genetics , Adaptation, Physiological/genetics , Cold Temperature/adverse effects , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Genotype , Plant Proteins/genetics , Transcriptome/genetics
19.
Proteomics Insights ; 10: 1178641819840369, 2019.
Article in English | MEDLINE | ID: mdl-31019367

ABSTRACT

Increased intestinal epithelial permeability has been linked to many enteric diseases because it allows easy access of microbial pathogens and toxins into the system. In poultry production, the restrictions in the use of antibiotic growth promoters have increased the chances of birds being susceptible to different enteric diseases. Thus, understanding the mechanisms which compromise intestinal function is pertinent. Based on our previous observation which showed the primary chicken enterocytes in culture undergoing dystrophic changes on treatment with phorbol myristate acetate (PMA), we surmised that this model, which appeared to mimic increased intestinal permeability, may help to understand the mechanisms of this problem. As genomic and proteomic changes are associated with many physiological and pathological problems, we were interested to find whether certain proteomic changes underlie the morphological alterations in the enterocytes induced by PMA. We exposed primary enterocyte cultures to a sub-lethal concentration of PMA, extracted the proteins, and analyzed by mass spectrometry for differentially regulated proteins. Our results showed that PMA affected several biological processes which negatively affected their energy metabolism, nuclear activities, and differentially regulated the levels of several stress proteins, chaperon, cytoskeletal, and signal transduction proteins that appear to be relevant in the cause of enterocyte dystrophy. Phorbol myristate acetate-affected signal transduction activities also raise the possibilities of their increased susceptibility to pathogens. The changes in enterocyte integrity can make intestine vulnerable to invasion by microbial pathogens and disrupt gut homeostasis.

20.
Anal Chem ; 91(6): 3964-3970, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30741530

ABSTRACT

Bacteria communicate chemically through a system called quorum sensing. In this work, microdialysis sampling procedures were optimized to collect quorum sensing molecules produced during in situ biofilm formation directly on the polymeric semipermeable membrane of the microdialysis probe. V. harveyi, a Gram-negative bacterium, was used as the model organism and releases variable chain length acylhomoserine lactones (AHLs) and acyl-oxohomoserine lactones (AOHLs) as signaling molecules during quorum sensing. Eliciting biofilm formation required coating fetal bovine serum onto the poly(ether sulfone) microdialysis membrane. Dialysates were collected in different experiments either during or after biofilm formation directly on a microdialysis probe. Continuous sampling of C4-AHL, C6-AHL, C8-AHL, C6-OXO-AHL, and C12-OXO-AHL was achieved over a period of up to 4 days. The AHLs and AOHLs in dialysates were concentrated with solid-phase extraction and quantified using LC-MS. Dialysate concentrations obtained for the AOHLs and AHLs ranged between 1 and 100 ppb (ng/mL) and varied between sampling days. This work demonstrates the initial use of microdialysis sampling to collect quorum sensing signaling chemicals during biofilm formation by a Gram-negative bacterial species.


Subject(s)
Bacteria/metabolism , Biofilms/growth & development , Homoserine/metabolism , Lactones/metabolism , Microdialysis/methods , Quorum Sensing , Bacteria/growth & development , Chromatography, Liquid , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...