Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 15: 1385598, 2024.
Article in English | MEDLINE | ID: mdl-38751786

ABSTRACT

Prostate cancer (PC) is an aggressive cancer that can progress rapidly and eventually become castrate-resistant prostate cancer (CRPC). Stage IV metastatic castrate-resistant prostate cancer (mCRPC) is an incurable late-stage cancer type with a low 5-year overall survival rate. Targeted therapeutics such as antibody-drug conjugates (ADCs) based on high-affinity monoclonal antibodies and potent drugs conjugated via smart linkers are being developed for PC management. Conjugating further with in vitro or in vivo imaging agents, ADCs can be used as antibody-theranostic conjugates (ATCs) for diagnostic and image-guided drug delivery. In this study, we have developed a novel ATC for PSMA (+) PC therapy utilizing (a) anti-PSMA 5D3 mAb, (b) Aurora A kinase inhibitor, MLN8237, and (c) for the first time using tetrazine (Tz) and trans-cyclooctene (TCO) click chemistry-based conjugation linker (CC linker) in ADC development. The resulting 5D3(CC-MLN8237)3.2 was labeled with suitable fluorophores for in vitro and in vivo imaging. The products were characterized by SDS-PAGE, MALDI-TOF, and DLS and evaluated in vitro by optical imaging, flow cytometry, and WST-8 assay for cytotoxicity in PSMA (+/-) cells. Therapeutic efficacy was determined in human PC xenograft mouse models following a designed treatment schedule. After the treatment study animals were euthanized, and toxicological studies, complete blood count (CBC), blood clinical chemistry analysis, and H&E staining of vital organs were conducted to determine side effects and systemic toxicities. The IC50 values of 5D3(CC-MLN8237)3.2-AF488 in PSMA (+) PC3-PIP and PMSA (-) PC3-Flu cells are 8.17 nM and 161.9 nM, respectively. Pure MLN8237 shows 736.9 nM and 873.4 nM IC50 values for PC3-PIP and PC3-Flu cells, respectively. In vivo study in human xenograft mouse models confirmed high therapeutic efficacy of 5D3(CC-MLN8237)3.2-CF750 with significant control of PSMA (+) tumor growth with minimal systemic toxicity in the treated group compared to PSMA (-) treated and untreated groups. Approximately 70% of PSMA (+) PC3-PIP tumors did not exceed the threshold of the tumor size in the surrogate Kaplan-Meyer analysis. The novel ATC successfully controlled the growth of PSMA (+) tumors in preclinical settings with minimal systemic toxicities. The therapeutic efficacy and favorable safety profile of novel 5D3(CC-MLN8237)3.2 ATC demonstrates their potential use as a theranostic against aggressive PC.

2.
Acta Neuropathol Commun ; 11(1): 203, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38115140

ABSTRACT

The prognosis of childhood medulloblastoma (MB) is often poor, and it usually requires aggressive therapy that adversely affects quality of life. microRNA-211 (miR-211) was previously identified as an important regulator of cells that descend from neural cells. Since medulloblastomas primarily affect cells with similar ontogeny, we investigated the role and mechanism of miR-211 in MB. Here we showed that miR-211 expression was highly downregulated in cell lines, PDXs, and clinical samples of different MB subgroups (SHH, Group 3, and Group 4) compared to normal cerebellum. miR-211 gene was ectopically expressed in transgenic cells from MB subgroups, and they were subjected to molecular and phenotypic investigations. Monoclonal cells stably expressing miR-211 were injected into the mouse cerebellum. miR-211 forced expression acts as a tumor suppressor in MB both in vitro and in vivo, attenuating growth, promoting apoptosis, and inhibiting invasion. In support of emerging regulatory roles of metabolism in various forms of cancer, we identified the acyl-CoA synthetase long-chain family member (ACSL4) as a direct miR-211 target. Furthermore, lipid nanoparticle-coated, dendrimer-coated, and cerium oxide-coated miR-211 nanoparticles were applied to deliver synthetic miR-211 into MB cell lines and cellular responses were assayed. Synthesizing nanoparticle-miR-211 conjugates can suppress MB cell viability and invasion in vitro. Our findings reveal miR-211 as a tumor suppressor and a potential therapeutic agent in MB. This proof-of-concept paves the way for further pre-clinical and clinical development.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , MicroRNAs , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Cerebellar Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Homeostasis , Ligases/genetics , Ligases/metabolism , Medulloblastoma/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Quality of Life
3.
J Control Release ; 362: 371-380, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37657693

ABSTRACT

Effective eye drop delivery systems for treating diseases of the posterior segment have yet to be clinically validated. Further, adherence to eye drop regimens is often problematic due to the difficulty and inconvenience of repetitive dosing. Here, we describe a strategy for topically dosing a peptide-drug conjugate to achieve effective and sustained therapeutic sunitinib concentrations to protect retinal ganglion cells (RGCs) in a rat model of optic nerve injury. We combined two promising delivery technologies, namely, a hypotonic gel-forming eye drop delivery system, and an engineered melanin binding and cell-penetrating peptide that sustains intraocular drug residence time. We found that once daily topical dosing of HR97-SunitiGel provided up to 2 weeks of neuroprotection after the last dose, effectively doubling the therapeutic window observed with SunitiGel. For chronic ocular diseases affecting the posterior segment, the convenience of an eye drop combined with intermittent dosing frequency could result in greater patient adherence, and thus, improved disease management.

4.
Pharmaceutics ; 15(9)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37765332

ABSTRACT

The progression of Alzheimer's disease (AD) correlates with the propagation of hyperphosphorylated tau (pTau) from the entorhinal cortex to the hippocampus and neocortex. Neutral sphingomyelinase2 (nSMase2) is critical in the biosynthesis of extracellular vesicles (EVs), which play a role in pTau propagation. We recently conjugated DPTIP, a potent nSMase2 inhibitor, to hydroxyl-PAMAM-dendrimer nanoparticles that can improve brain delivery. We showed that dendrimer-conjugated DPTIP (D-DPTIP) robustly inhibited the spread of pTau in an AAV-pTau propagation model. To further evaluate its efficacy, we tested D-DPTIP in the PS19 transgenic mouse model. Unexpectantly, D-DPTIP showed no beneficial effect. To understand this discrepancy, we assessed D-DPTIP's brain localization. Using immunofluorescence and fluorescence-activated cell-sorting, D-DPTIP was found to be primarily internalized by microglia, where it selectively inhibited microglial nSMase2 activity with no effect on other cell types. Furthermore, D-DPTIP inhibited microglia-derived EV release into plasma without affecting other brain-derived EVs. We hypothesize that microglial targeting allowed D-DPTIP to inhibit tau propagation in the AAV-hTau model, where microglial EVs play a central role in propagation. However, in PS19 mice, where tau propagation is independent of microglial EVs, it had a limited effect. Our findings confirm microglial targeting with hydroxyl-PAMAM dendrimers and highlight the importance of understanding cell-specific mechanisms when designing targeted AD therapies.

5.
Nat Commun ; 14(1): 2509, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37130851

ABSTRACT

Sustained drug delivery strategies have many potential benefits for treating a range of diseases, particularly chronic diseases that require treatment for years. For many chronic ocular diseases, patient adherence to eye drop dosing regimens and the need for frequent intraocular injections are significant barriers to effective disease management. Here, we utilize peptide engineering to impart melanin binding properties to peptide-drug conjugates to act as a sustained-release depot in the eye. We develop a super learning-based methodology to engineer multifunctional peptides that efficiently enter cells, bind to melanin, and have low cytotoxicity. When the lead multifunctional peptide (HR97) is conjugated to brimonidine, an intraocular pressure lowering drug that is prescribed for three times per day topical dosing, intraocular pressure reduction is observed for up to 18 days after a single intracameral injection in rabbits. Further, the cumulative intraocular pressure lowering effect increases ~17-fold compared to free brimonidine injection. Engineered multifunctional peptide-drug conjugates are a promising approach for providing sustained therapeutic delivery in the eye and beyond.


Subject(s)
Drug Delivery Systems , Melanins , Animals , Rabbits , Brimonidine Tartrate , Peptides , Machine Learning
6.
ACS Appl Mater Interfaces ; 14(41): 46290-46303, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36214413

ABSTRACT

Small interfering RNAs (siRNAs) are potent weapons for gene silencing, with an opportunity to correct defective genes and stop the production of undesirable proteins, with many applications in central nervous system (CNS) disorders. However, successful delivery of siRNAs to the brain parenchyma faces obstacles such as the blood-brain barrier (BBB), brain tissue penetration, and targeting of specific cells. In addition, siRNAs are unstable under physiological conditions and are susceptible to protein binding and enzymatic degradation, necessitating a higher dosage to remain effective. To address these issues and advance siRNA delivery, we report the development of covalently conjugated hydroxyl-terminated poly(amidoamine) (PAMAM) dendrimer-siRNA conjugates, demonstrated with a siRNA against GFP (siGFP) conjugate (D-siGFP) utilizing glutathione-sensitive linkers. This allows for precise nucleic acid loading, protects the payload from premature degradation, delivers the siRNA cargo into cells, and achieves significant GFP knockdown in vitro (∼40%) and in vivo (∼30%). Compared to commercially available delivery systems such as RNAi Max and Lipofectamine, D-siGFP retains the potency of the siRNA in vitro. In addition, the dendrimer-siGFP conjugate significantly enhances the half-life of siRNA in the presence of plasma and endonucleases and maintains the passive targeting ability of PAMAM dendrimers to reactive microglia. When administered intratumorally to orthotopic glioblastoma multiform tumors (GBM) in CX3CR-1GFP mice, D-siGFP localizes in tumor-associated macrophages (TAMs) within the tumor parenchyma, minimizing off-target effects in other cell populations. The facile conjugation strategy for dendrimer-siRNA conjugates presented here offers a promising approach for targeted, systemic intracellular delivery of siRNA, serving as a potential bridge for the clinical translation of RNAi therapies.


Subject(s)
Dendrimers , Glioblastoma , Mice , Animals , Glioblastoma/drug therapy , RNA, Small Interfering/pharmacology , Dendrimers/pharmacology , RNA, Double-Stranded , Models, Animal , Glutathione , Endonucleases
7.
Soft Matter ; 16(44): 10158-10168, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33035281

ABSTRACT

Supramolecular hydrogels formed by noncovalent self-assembly of low molecular weight (LMW) agents are promising next-generation biomaterials. Thixotropic shear response and mechanical stability are two emergent properties of hydrogels that are critical for biomedical applications including drug delivery and tissue engineering in which injection of the hydrogel will be necessary. Herein, we demonstrate that the emergent thixotropic properties of supramolecular phenylalanine-derived hydrogels are dependent on the conditions in which they are formulated. Specifically, hydrogels formed from fluorenylmethoxycarbonyl (Fmoc) modified phenylalanine derivatives, 3-fluorophenylalanine (Fmoc-3F-Phe) and pentafluorophenylalanine (Fmoc-F5-Phe), were characterized as a function of gelation conditions to examine how shear response and mechanical stability properties correlate to mode of gelation. Two distinct methods of gelation were compared. First, spontaneous self-assembly and gelation was triggered by a solvent exchange method in which a concentrated solution of the gelator in dimethylsulfoxide was diluted in water. Second, gelation was promoted by dissolution of the gelator in water at basic pH followed by gradual pH adjustment from basic to mildly acidic by the hydrolysis of glucono-delta-lactone. Hydrogels formed under solvent exchange conditions were mechanically unstable and poorly shear-responsive whereas hydrogels formed by gradual acidification were temporally stable and had highly shear-responsive viscoelastic character. These studies confirm that gelation environment and mechanism have a significant influence on the emergent properties of supramolecular hydrogels and offer insight into how gelation conditions can be used to tune hydrogel properties for specific applications.


Subject(s)
Hydrogels , Phenylalanine , Biocompatible Materials , Drug Delivery Systems , Tissue Engineering
8.
Langmuir ; 35(46): 14939-14948, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31664849

ABSTRACT

Supramolecular hydrogels formed by self-assembly of low molecular weight (LMW) compounds have been identified as promising materials for applications in tissue engineering and regenerative medicine. In many cases, the relationship between the chemical structure of the gelator and the emergent hydrogel properties is poorly understood. As a result, empirical screening strategies instead of rational design approaches are often relied upon to tune the emergent properties of the gels. Herein, we describe a novel strategy to identify improved phenylalanine (Phe) derived gelators using a focused empirical approach. Fluorenylmethoxycarbonyl (Fmoc) protected Phe derivatives are a privileged class of gelators that spontaneously self-assemble into fibrils that entangle to form a hydrogel network upon dissolution into water. However, the Fmoc group has been shown to have toxicity drawbacks for potential biological applications, requiring the identification of new N-terminal modifications that promote efficient self-assembly but lack the shortcomings of the Fmoc group. We previously discovered that fibrils in Fmoc-p-nitrophenylalanine (Fmoc-4-NO2-Phe) hydrogels transition to crystalline microtubes after several hours by a mechanism that involves the hierarchical assembly and fusion of the hydrogel fibrils. We hypothesized that this hierarchical crystallization behavior could form the basis of a screening approach to identify alternative N-terminal functional groups to replace Fmoc in Phe-derived LMW gelators. Specifically, screening N-terminal modifying groups for 4-NO2-Phe that stabilize the hydrogel state by preventing subsequent hierarchical crystallization would facilitate empirical identification of functional Fmoc replacements. To test this approach, we screened a small series of 4-NO2-Phe derivatives with various N-terminal modifying groups to determine if any provided stable LMW supramolecular hydrogels. All but one of the 4-NO2-Phe derivatives assembled into crystalline forms. Only the 1-naphthaleneacetic acid (1-Nap) 4-NO2-Phe derivative self-assembled into a stable hydrogel network. Additional Phe derivatives were modified by N-terminal 1-Nap groups to confirm the general potential of 1-Nap as a suitable replacement for Fmoc, and all derivatives formed stable hydrogels under similar conditions to their Fmoc-Phe counterparts. These results illustrate the potential of this approach to identify next-generation Phe-derived LMW gelators with improved emergent properties.


Subject(s)
Biochemistry/methods , Hydrogels/chemistry , Nanostructures/chemistry , Phenylalanine/chemistry , Crystallization , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Molecular Weight , Nitrogen Oxides/chemistry , Rheology
9.
Interface Focus ; 7(6): 20160099, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29147549

ABSTRACT

Peptide and low molecular weight amino acid-based materials that self-assemble in response to environmental triggers are highly desirable candidates in forming functional materials with tunable biophysical properties. In this paper, we explore redox-sensitive self-assembly of cationic phenylalanine derivatives conjugated to naphthalene diimide (NDI). Self-assembly of the cationic Phe-NDI conjugates into nanofibrils was induced in aqueous solvent at high ionic strength. Under reducing conditions, these self-assembled Phe-NDI conjugate fibrils underwent a morphological change to non-fibril aggregates. Upon reoxidation, the initially observed fibrils were reformed. The study herein provides an interesting strategy to effect reversible switching of the structure of supramolecular materials that can be applied to the development of sophisticated stimulus-responsive materials.

10.
Bioconjug Chem ; 28(3): 751-759, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28292179

ABSTRACT

Self-assembling peptides are extensively exploited as bioactive materials in applications such as regenerative medicine and drug delivery despite the fact that their relatively weak noncovalent interactions often render them susceptible to mechanical destruction and solvent erosion. Herein, we describe how covalent cross-linking enhances the mechanical stability of self-assembling π-conjugated peptide hydrogels. We designed short peptide-chromophore-peptide sequences displaying different reactive functional groups that can form cross-links with appropriately modified bifunctional polyethylene glycol (PEG)-based small guest molecules. These peptides self-assemble into one-dimensional fibrillar networks in response to pH in the aqueous environment. The cross-linking reactions were promoted to create a secondary network locked in place by covalent bonds within the physically cross-linked (preassembled) π-conjugated peptide strands. Rheology measurements were used to evaluate the mechanical modifications of the network, and the chemical changes that accompany the cross-linking were further confirmed by infrared spectroscopy. Furthermore, we modified these cross-linkable π-conjugates by incorporating extracellular matrix (ECM)-derived Ile-Lys-Val-Ala-Val (IKVAV) and Arg-Gly-Asp (RGD) bioactive epitopes to support human neural stem and progenitor cell (hNSCs) differentiation. The hNSCs undergo differentiation into neurons on IKVAV-derived π-conjugates while RGD-containing peptides failed to support cell attachment. These findings provide significant insight into the biochemical and electronic properties of π-conjugated peptide hydrogelators for creating artificial ECM to enable advanced tissue-engineering applications.


Subject(s)
Biocompatible Materials/chemistry , Cross-Linking Reagents/chemistry , Hydrogels/chemistry , Laminin/chemistry , Oligopeptides/chemistry , Peptide Fragments/chemistry , Peptides/chemistry , Polyethylene Glycols/chemistry , Cell Adhesion , Electrons , Humans , Neural Stem Cells/cytology , Neurogenesis , Rheology , Tissue Engineering , Tissue Scaffolds/chemistry
11.
Langmuir ; 32(3): 787-99, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26717444

ABSTRACT

Supramolecular hydrogels derived from the self-assembly of organic molecules have been exploited for applications ranging from drug delivery to tissue engineering. The relationship between the structure of the assembly motif and the emergent properties of the resulting materials is often poorly understood, impeding rational approaches for the creation of next-generation materials. Aromatic π-π interactions play a significant role in the self-assembly of many supramolecular hydrogelators, but the exact nature of these interactions lacks definition. Conventional models that describe π-π interactions rely on quadrupolar electrostatic interactions between neighboring aryl groups in the π-system. However, recent experimental and computational studies reveal the potential importance of local dipolar interactions between elements of neighboring aromatic rings in stabilizing π-π interactions. Herein, we examine the nature of π-π interactions in the self- and coassembly of Fmoc-Phe-derived hydrogelators by systematically varying the electron-donating or electron-withdrawing nature of the side chain benzyl substituents and correlating these effects to the emergent assembly and gelation properties of the systems. These studies indicate a significant role for stabilizing dipolar interactions between neighboring benzyl groups in the assembled materials. Additional evidence for specific dipolar interactions is provided by high-resolution crystal structures obtained from dynamic transition of gel fibrils to crystals for several of the self-assembled/coassembled Fmoc-Phe derivatives. In addition to electronic effects, steric properties also have a significant effect on the interaction between neighboring benzyl groups in these assembled systems. These findings provide significant insight into the structure-function relationship for Fmoc-Phe-derived hydrogelators and give cues for the design of next-generation materials with desired emergent properties.


Subject(s)
Fluorenes/chemistry , Hydrogels/chemistry , Phenylalanine/chemistry , Crystallography, X-Ray , Models, Molecular , Phase Transition , Phenylalanine/analogs & derivatives , Static Electricity , Thermodynamics
12.
Langmuir ; 31(36): 9933-42, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26305488

ABSTRACT

Hydrogel fibril and crystal formation are related self-assembly processes that provide materials with distinct emergent properties. The relationship between fibril and crystal growth is poorly understood, and efforts to engineer controlled hydrogelation vs crystallization via small molecule self-assembly currently depend on empirical approaches. Herein, we report the dynamic transition of self-assembled hydrogel fibrils of a phenylalanine (Phe) derivative, Fmoc-p-nitrophenylalanine (Fmoc-4-NO2-Phe), to crystalline microtubes. As has been shown with other Fmoc-Phe derivatives, Fmoc-4-NO2-Phe spontaneously self-assembles into amyloid-like fibrils that form an entangled hydrogel network when suspended in water. However, Fmoc-4-NO2-Phe fibrils uniquely transform over time into crystalline microtubes. Hydrogel fibrils appear to be a kinetic state with microtube crystals more thermodynamically favored. This dynamic transition from fibril to crystal has enabled a high-resolution structural analysis of the packing orientation of these self-assembled materials. Taking cues from this structural analysis, we demonstrate a rational strategy for stabilization of the kinetic Fmoc-4-NO2-Phe hydrogel fibrils. These results represent significant advances in our understanding of the dynamic nature of self-assembly processes and in our ability to rationally engineer these processes to provide materials with desired emergent properties.


Subject(s)
Hydrogels , Crystallization , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Powder Diffraction , Thermodynamics
13.
Chem Commun (Camb) ; 51(56): 11260-3, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26081605

ABSTRACT

Fmoc-3F-Phe-Arg-NH2 and Fmoc-3F-Phe-Asp-OH dipeptides undergo coassembly to form two-component nanofibril hydrogels. These hydrogels support the viability and growth of NIH 3T3 fibroblast cells. The supramolecular display of Arg and Asp at the nanofibril surface effectively mimics the integrin-binding RGD peptide of fibronectin, without covalent connection between the Arg and Asp functionality.


Subject(s)
Biomimetic Materials/chemistry , Cell Culture Techniques/methods , Dipeptides/chemistry , Extracellular Matrix/chemistry , Fibroblasts/cytology , Hydrogels/chemistry , Animals , Biomimetics , Cell Survival , Mice , Models, Molecular , Molecular Conformation , NIH 3T3 Cells , Nanofibers/chemistry
14.
Bioorg Med Chem Lett ; 23(18): 5199-202, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23910594

ABSTRACT

Cationic amyloid fibrils, including the Semen Enhancer of Virus Infection (SEVI), have recently been described in human semen. Simple methods for quantitating these fibrils are needed to improve our understanding of their biological function. We performed high-throughput screening to identify molecules that bind SEVI, and identified a small molecule (8E2), that fluoresced brightly in the presence of SEVI and other cationic fibrils. 8E2 bound SEVI with almost 40-fold greater affinity than thioflavin-T, and could efficiently detect high molecular weight fibrils in human seminal fluid.


Subject(s)
Amyloid/analysis , Semen/chemistry , Cations/analysis , Humans , Molecular Structure , Spectrometry, Fluorescence
15.
Biomacromolecules ; 12(7): 2735-45, 2011 Jul 11.
Article in English | MEDLINE | ID: mdl-21568346

ABSTRACT

Peptide self-assembly leading to cross-ß amyloid structures is a widely studied phenomenon because of its role in amyloid pathology and the exploitation of amyloid as a functional biomaterial. The self-assembly process is governed by hydrogen bonding, hydrophobic, aromatic π-π, and electrostatic Coulombic interactions. A role for aromatic π-π interactions in peptide self-assembly leading to amyloid has been proposed, but the relative contributions of π-π versus general hydrophobic interactions in these processes are poorly understood. The Ac-(XKXK)(2)-NH(2) peptide was used to study the contributions of aromatic and hydrophobic interactions to peptide self-assembly. Position X was globally replaced by valine (Val), isoleucine (Ile), phenylalanine (Phe), pentafluorophenylalanine (F(5)-Phe), and cyclohexylalanine (Cha). At low pH, these peptides remain monomeric because of repulsion of charged lysine (Lys) residues. Increasing the solvent ionic strength to shield repulsive charge-charge interactions between protonated Lys residues facilitated cross-ß fibril formation. It was generally found that as peptide hydrophobicity increased, the required ionic strength to induce self-assembly decreased. At [NaCl] ranging from 0 to 1000 mM, the Val sequence failed to assemble. Assembly of the Phe sequence commenced at 700 mM NaCl and at 300 mM NaCl for the less hydrophobic Ile variant, even though it displayed a mixture of random coil and ß-sheet secondary structures over all NaCl concentrations. ß-Sheet formation for F(5)-Phe and Cha sequences was observed at only 20 and 60 mM NaCl, respectively. Whereas self-assembly propensity generally correlated to peptide hydrophobicity and not aromatic character the presence of aromatic amino acids imparted unique properties to fibrils derived from these peptides. Nonaromatic peptides formed fibrils of 3-15 nm in diameter, whereas aromatic peptides formed nanotape or nanoribbon architectures of 3-7 nm widths. In addition, all peptides formed fibrillar hydrogels at sufficient peptide concentrations, but nonaromatic peptides formed weak gels, whereas aromatic peptides formed rigid gels. These findings clarify the influence of aromatic amino acids on peptide self-assembly processes and illuminate design principles for the inclusion of aromatic amino acids in amyloid-derived biomaterials.


Subject(s)
Amino Acids, Aromatic/chemistry , Hydrogels/chemical synthesis , Peptides/chemical synthesis , Hydrogels/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Osmolar Concentration , Peptides/chemistry , Protein Structure, Secondary , Sodium Chloride/chemistry
16.
J Org Chem ; 75(15): 5113-25, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20593836

ABSTRACT

Regio- and diastereoselective reactions of a homoproline enolate enable the synthesis of novel extended dipeptide surrogates. Bicyclic carbamate 9 and fused beta-lactam scaffold 11 were prepared from L-pyroglutamic acid via substrate-controlled electrophilic azidation. Synthesis of orthogonally protected hexahydropyrrolizine, hexahydropyrrolizinone, and hexahydropyrroloazepinone dipeptide surrogates relied on allylation of proline derivative 5, followed by Curtius rearrangement to introduce the N-terminal carbamate group. A total of six azabicycloalkane derivatives were evaluated for conformational mimicry of extended dipeptides by a combination of X-ray diffraction and molecular modeling. Analysis of putative backbone dihedral angles and N- to C-terminal dipeptide distances indicate that compounds (alpha'S)-14b and 21 approximate the conformation of dipeptides found in beta-sheets, while tripeptide mimic 28 is also highly extended in the solid state. Structural data suggest that ring size and relative stereochemistry have a profound effect on the ability of these scaffolds to act as beta-strand mimetics and should inform the design of related conformational probes.


Subject(s)
Bridged Bicyclo Compounds/chemical synthesis , Dipeptides/chemical synthesis , Bridged Bicyclo Compounds/chemistry , Dipeptides/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Spectrometry, Mass, Electrospray Ionization
17.
J Org Chem ; 73(18): 7420-3, 2008 Sep 19.
Article in English | MEDLINE | ID: mdl-18698823

ABSTRACT

Two configurationally stable carbon-based analogues of pyochelin have been prepared from Boc-pyroglutamic acid-tert-butyl ester in 11 and 13 steps. Introduction of the amino group was achieved by a highly diastereoselective electrophilic azidation reaction to afford novel bis-alpha-amino acid proline derivatives.


Subject(s)
Azides/chemistry , Phenols/chemical synthesis , Proline/analogs & derivatives , Proline/chemistry , Thiazoles/chemical synthesis , Crystallography, X-Ray , Models, Molecular , Molecular Conformation , Phenols/chemistry , Stereoisomerism , Thiazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...