Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 168: 1142-1151, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27823780

ABSTRACT

Modified zero valent iron (ZVI) is obtained from commercial iron powder co-ground with manganese dioxide (MnO2) in intensive mechanical stress. The result indicates that the modified ZVI is very effective in arsenic sludge stabilization with a declination of arsenic leaching contraction from 72.50 mg/L to 0.62 mg/L, much lower than that of ordinary ZVI (10.48 mg/L). The involved process, including mechanochemical activation, corrosion and arsenic adsorption, is characterized explicitly to verify the improved arsenic stabilization mechanism. It shows that the mechanically formed Fe-Mn binary oxides layer results in an intensive corrosion extent, generating a mass of corrosion products. Moreover, as the emergence of Mn will restrain the process of iron (hydr)oxides crystallization, the ultimate corrosion products of the modified ZVI predominates in amorphous iron (hydr)oxides, performing much better in arsenic absorption. According to the BCR analysis, unstable arsenic in sludge is easily transformed to residual fraction by the help of amorphous iron (hydr)oxides, resulting in a restrained environmental availability of arsenic sludge after the modified ZVI stabilization.


Subject(s)
Arsenic/chemistry , Iron/chemistry , Manganese/chemistry , Sewage/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Corrosion
2.
J Environ Manage ; 181: 756-761, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27449964

ABSTRACT

Wastewater treatment sludge from a primary lead-zinc smelter is characterized as hazardous waste and requires treatment prior to disposal due to its significant arsenic and heavy metals contents. This study presents a method for the stabilization of arsenic sludge that uses a slag based curing agent composed of smelting slag, cement clinker and limestone. The Unconfined Compressive Strength (UCS) test, the China Standard Leaching Test (CSLT), and the Toxicity Characteristic Leaching Procedures (TCLP) were used to physically and chemically characterize the solidified sludge. The binder ratio was determined according to the UCS and optimal experiments, and the optimal mass ratio of m (smelting slag): m (cement clinker): m (gypsum sludge): m (limestone) was 70:13:12:5. When the binder was mixed with arsenic sludge using a mass ratio of 1:1 and then maintained at 25 °C for 28 d, the UCS reached 9.30 MPa. The results indicated that the leached arsenic content was always less than 5 mg/L, which is a safe level, and does not contribute to recontamination of the environment. The arsenic sludge from the Zn/Pb metallurgy plant can be blended with cement clinker and smelting slag materials for manufacturing bricks and can be recycled as construction materials.


Subject(s)
Arsenic/chemistry , Environmental Restoration and Remediation/methods , Hazardous Waste , Metallurgy , Metals, Heavy/chemistry , Sewage/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Arsenic/analysis , China , Construction Materials , Industrial Waste/analysis , Lead/chemistry , Recycling , Water Pollutants, Chemical/analysis , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...