Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Comput Methods Programs Biomed ; 251: 108203, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744057

ABSTRACT

BACKGROUND AND OBJECTIVE: Drug inhalation is generally accepted as the preferred administration method for treating respiratory diseases. To achieve effective inhaled drug delivery for an individual, it is necessary to use an interdisciplinary approach that can cope with inter-individual differences. The paper aims to present an individualised pulmonary drug deposition model based on Computational Fluid and Particle Dynamics simulations within a time frame acceptable for clinical use. METHODS: We propose a model that can analyse the inhaled drug delivery efficiency based on the patient's airway geometry as well as breathing pattern, which has the potential to also serve as a tool for a sub-regional diagnosis of respiratory diseases. The particle properties and size distribution are taken for the case of drug inhalation by using nebulisers, as they are independent of the patient's breathing pattern. Finally, the inhaled drug doses that reach the deep airways of different lobe regions of the patient are studied. RESULTS: The numerical accuracy of the proposed model is verified by comparison with experimental results. The difference in total drug deposition fractions between the simulation and experimental results is smaller than 4.44% and 1.43% for flow rates of 60 l/min and 15 l/min, respectively. A case study involving a COVID-19 patient is conducted to illustrate the potential clinical use of the model. The study analyses the drug deposition fractions in relation to the breathing pattern, aerosol size distribution, and different lobe regions. CONCLUSIONS: The entire process of the proposed model can be completed within 48 h, allowing an evaluation of the deposition of the inhaled drug in an individual patient's lung within a time frame acceptable for clinical use. Achieving a 48-hour time window for a single evaluation of patient-specific drug delivery enables the physician to monitor the patient's changing conditions and potentially adjust the drug administration accordingly. Furthermore, we show that the proposed methodology also offers a possibility to be extended to a detection approach for some respiratory diseases.


Subject(s)
Computer Simulation , Nebulizers and Vaporizers , Humans , Administration, Inhalation , Particle Size , COVID-19 , Lung/metabolism , Lung/diagnostic imaging , SARS-CoV-2 , Hydrodynamics , Aerosols , Drug Delivery Systems , COVID-19 Drug Treatment
2.
Mol Pharm ; 21(4): 1848-1860, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38466817

ABSTRACT

Liposomal carrier systems have emerged as a promising technology for pulmonary drug delivery. This study focuses on two selected liposomal systems, namely, dipalmitoylphosphatidylcholine stabilized by phosphatidic acid and cholesterol (DPPC-PA-Chol) and dipalmitoylphosphatidylcholine stabilized by polyethylene glycol and cholesterol (DPPC-PEG-Chol). First, the research investigates the stability of these liposomal systems during the atomization process using different kinds of nebulizers (air-jet, vibrating mesh, and ultrasonic). The study further explores the aerodynamic particle size distribution of the aerosol generated by the nebulizers. The nebulizer that demonstrated optimal stability and particle size was selected for more detailed investigation, including Andersen cascade impactor measurements, an assessment of the influence of flow rate and breathing profiles on aerosol particle size, and an in vitro deposition study on a realistic replica of the upper airways. The most suitable combination of a nebulizer and liposomal system was DPPC-PA-Chol nebulized by a Pari LC Sprint Star in terms of stability and particle size. The influence of the inspiration flow rate on the particle size was not very strong but was not negligible either (decrease of Dv50 by 1.34 µm with the flow rate increase from 8 to 60 L/min). A similar effect was observed for realistic transient inhalation. According to the in vitro deposition measurement, approximately 90% and 70% of the aerosol penetrated downstream of the trachea using the stationary flow rate and the realistic breathing profile, respectively. These data provide an image of the potential applicability of liposomal carrier systems for nebulizer therapy. Regional lung drug deposition is patient-specific; therefore, deposition results might vary for different airway geometries. However, deposition measurement with realistic boundary conditions (airway geometry, breathing profile) brings a more realistic image of the drug delivery by the selected technology. Our results show how much data from cascade impactor testing or estimates from the fine fraction concept differ from those of a more realistic case.


Subject(s)
Bronchodilator Agents , Trachea , Humans , 1,2-Dipalmitoylphosphatidylcholine , Nebulizers and Vaporizers , Liposomes , Aerosols , Administration, Inhalation , Drug Delivery Systems , Cholesterol , Particle Size , Equipment Design
3.
Comput Biol Med ; 170: 107994, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38308867

ABSTRACT

The numerical simulation of inhaled aerosols in medical research starts to play a crucial role in understanding local deposition within the respiratory tract, a feat often unattainable experimentally. Research on children is particularly challenging due to the limited availability of in vivo data and the inherent morphological intricacies. CFD solvers based on Finite Volume Methods (FVM) have been widely employed to solve the flow field in such studies. Recently, Lattice Boltzmann Methods (LBM), a mesoscopic approach, have gained prominence, especially for their scalability on High-Performance Computers. This study endeavours to compare the effectiveness of LBM and FVM in simulating particulate flows within a child's respiratory tract, supporting research related to particle deposition and medication delivery using LBM. Considering a 5-year-old child's airway model at a steady inspiratory flow, the results are compared with in vitro experiments. Notably, both LBM and FVM exhibit favourable agreement with experimental data for the mean velocity field and the turbulence intensity. For particle deposition, both numerical methods yield comparable results, aligning well with in vitro experiments across a particle size range of 0.1-20 µm. Discrepancies are identified in the upper airways and trachea, indicating a lower deposition fraction than in the experiment. Nonetheless, both LBM and FVM offer invaluable insights into particle behaviour for different sizes, which are not easily achievable experimentally. In terms of practical implications, the findings of this study hold significance for respiratory medicine and drug delivery systems - potential health impacts, targeted drug delivery strategies or optimisation of respiratory therapies.


Subject(s)
Hydrodynamics , Trachea , Humans , Child, Preschool , Computer Simulation , Trachea/anatomy & histology , Aerosols , Particle Size
4.
Discov Nano ; 18(1): 38, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-37382704

ABSTRACT

In this study, novel Trojan particles were engineered for direct delivery of doxorubicin (DOX) and miR-34a as model drugs to the lungs to raise local drug concentration, decrease pulmonary clearance, increase lung drug deposition, reduce systemic side effects, and overcome multi-drug resistance. For this purpose, targeted polyelectrolyte nanoparticles (tPENs) developed with layer-by-layer polymers (i.e., chitosan, dextran sulfate, and mannose-g-polyethyleneimine) were spray dried into a multiple-excipient (i.e., chitosan, leucine, and mannitol). The resulting nanoparticles were first characterized in terms of size, morphology, in vitro DOX release, cellular internalization, and in vitro cytotoxicity. tPENs showed comparable cellular uptake levels to PENs in A549 cells and no significant cytotoxicity on their metabolic activity. Co-loaded DOX/miR-34a showed a greater cytotoxicity effect than DOX-loaded tPENs and free drugs, which was confirmed by Actin staining. Thereafter, nano-in-microparticles were studied through size, morphology, aerosolization efficiency, residual moisture content, and in vitro DOX release. It was demonstrated that tPENs were successfully incorporated into microspheres with adequate emitted dose and fine particle fraction but low mass median aerodynamic diameter for deposition into the deep lung. The dry powder formulations also demonstrated a sustained DOX release at both pH values of 6.8 and 7.4.

5.
Int J Pharm ; 634: 122695, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36758881

ABSTRACT

This contribution is focused on the preparation of a liposomal drug delivery system of erlotinib resisting the nebulization process that could be used for local treatment of non-small-cell lung cancer. Liposomes with different compositions were formulated to reveal their influence on the encapsulation efficiency of erlotinib. An encapsulation efficiency higher than 98 % was achieved for all vesicles containing phosphatidic acid (d ≈ 100 nm, ζ = - 43 mV) even in the presence of polyethylene glycol (d ≈ 150 nm, ζ = - 17 mV) which decreased this value in all other formulas. The three most promising formulations were nebulized by two air-jet and two vibrating mesh nebulizers, and the aerosol deposition in lungs was calculated by tools of computational fluid and particle mechanics. According to the numerical simulations and measurements of liposomal stability, air-jet nebulizers generated larger portion of the aerosol able to penetrate deeper into the lungs, but the delivery is likely to be more efficient when the formulation is administered by Aerogen Solo vibrating mesh nebulizer because of a higher portion of intact vesicles after the nebulization. The leakage of encapsulated drug from liposomes nebulized by this nebulizer was lower than 2 % for all chosen vesicles.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Administration, Inhalation , Liposomes , Erlotinib Hydrochloride , Respiratory Aerosols and Droplets , Nebulizers and Vaporizers , Drug Delivery Systems , Lung , Particle Size , Bronchodilator Agents
6.
Mater Sci Eng C Mater Biol Appl ; 126: 112117, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34082934

ABSTRACT

Controlled pulmonary drug delivery systems employing non-spherical particles as drug carriers attract considerable attention nowadays. Such anisotropic morphologies may travel deeper into the lung airways, thus enabling the efficient accumulation of therapeutic compounds at the point of interest and subsequently their sustained release. This study focuses on the fabrication of electrospun superparamagnetic polymer-based biodegradable microrods consisting of poly(l-lactide) (PLLA), polyethylene oxide (PEO) and oleic acid-coated magnetite nanoparticles (OA·Fe3O4). The production of magnetite-free (0% wt. OA·Fe3O4) and magnetite-loaded (50% and 70% wt. Fe3O4) microrods was realized upon subjecting the as-prepared electrospun fibers to UV irradiation, followed by sonication. Moreover, drug-loaded microrods were fabricated incorporating methyl 4-hydroxybenzoate (MHB) as a model pharmaceutical compound and the drug release profile from both, the drug-loaded membranes and the corresponding microrods was investigated in aqueous media. In addition, the magnetic properties of the produced materials were exploited for remote induction of hyperthermia under AC magnetic field, while the possibility to reduce transport losses and enhance the targeted delivery to lower airways by manipulation of the airborne microrods by DC magnetic field was also demonstrated.


Subject(s)
Heating , Magnetite Nanoparticles , Drug Delivery Systems , Lung , Magnetic Phenomena , Magnetics
7.
Colloids Surf B Biointerfaces ; 204: 111793, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33932888

ABSTRACT

In this study, three different molecules (cholesterol, phosphatidic acid, and polyethylene glycol) were used for the stabilization of liposomes during the nebulization process. The purpose of this article is to answer the question of whether the change in the composition of liposomes affected the parameters of generated aerosol and whether the nebulization process affected observed properties of liposomes. Firstly, liposomes with different composition were prepared and their properties were checked by dynamic and electrophoretic light scattering. The membrane properties were measured by fluorescence spectroscopy - especially generalized polarization (Laurdan) and anisotropy (Diphenylhexatriene). The same characteristic of liposomes was measured after the nebulization by vibrating mesh nebulizer. Cholesterol was capable of liposome stabilization because of increased membrane fluidity. The membrane properties of the outer and inner parts were not influenced by the nebulization process. Electrostatic stabilization was successful for the lowest concentration of phosphatidic acid, but after the nebulization process the hydration of the membrane outer part was changed. Higher amount of PEG needs to be added for successful steric stabilization. The nebulization process of the two lowest concentrations of PEG slightly influenced immobilized water and the rigidity of inner part of the membrane (especially around the phase transition temperature).


Subject(s)
Liposomes , Surgical Mesh , Aerosols , Nebulizers and Vaporizers , Particle Size
8.
J Aerosol Sci ; 150: 105649, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32904428

ABSTRACT

The inhalation route has a substantial influence on the fate of inhaled particles. An outbreak of infectious diseases such as COVID-19, influenza or tuberculosis depends on the site of deposition of the inhaled pathogens. But the knowledge of respiratory deposition is important also for occupational safety or targeted delivery of inhaled pharmaceuticals. Simulations utilizing computational fluid dynamics are becoming available to a wide spectrum of users and they can undoubtedly bring detailed predictions of regional deposition of particles. However, if those simulations are to be trusted, they must be validated by experimental data. This article presents simulations and experiments performed on a geometry of airways which is available to other users and thus those results can be used for intercomparison between different research groups. In particular, three hypotheses were tested. First: Oral breathing and combined breathing are equivalent in terms of particle deposition in TB airways, as the pressure resistance of the nasal cavity is so high that the inhaled aerosol flows mostly through the oral cavity in both cases. Second: The influence of the inhalation route (nasal, oral or combined) on the regional distribution of the deposited particles downstream of the trachea is negligible. Third: Simulations can accurately and credibly predict deposition hotspots. The maximum spatial resolution of predicted deposition achievable by current methods was searched for. The simulations were performed using large-eddy simulation, the flow measurements were done by laser Doppler anemometry and the deposition has been measured by positron emission tomography in a realistic replica of human airways. Limitations and sources of uncertainties of the experimental methods were identified. The results confirmed that the high-pressure resistance of the nasal cavity leads to practically identical velocity profiles, even above the glottis for the mouth, and combined mouth and nose breathing. The distribution of deposited particles downstream of the trachea was not influenced by the inhalation route. The carina of the first bifurcation was not among the main deposition hotspots regardless of the inhalation route or flow rate. On the other hand, the deposition hotspots were identified by both CFD and experiments in the second bifurcation in both lungs, and to a lesser extent also in both the third bifurcations in the left lung.

9.
Pharmaceutics ; 11(4)2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30939795

ABSTRACT

Medical aerosols are key elements of current chronic obstructive pulmonary disease (COPD) therapy. Therapeutic effects are conditioned by the delivery of the right amount of medication to the right place within the airways, that is, to the drug receptors. Deposition of the inhaled drugs is sensitive to the breathing pattern of the patients which is also connected with the patient's disease severity. The objective of this work was to measure the realistic inhalation profiles of mild, moderate, and severe COPD patients, simulate the deposition patterns of Symbicort® Turbuhaler® dry powder drug and compare them to similar patterns of healthy control subjects. For this purpose, a stochastic airway deposition model has been applied. Our results revealed that the amount of drug depositing within the lungs correlated with the degree of disease severity. While drug deposition fraction in the lungs of mild COPD patients compared with that of healthy subjects (28% versus 31%), lung deposition fraction characteristic of severe COPD patients was lower by a factor of almost two (about 17%). Deposition fraction of moderate COPD patients was in-between (23%). This implies that for the same inhaler dosage severe COPD patients receive a significantly lower lung dose, although, they would need more.

10.
Eur J Pharm Sci ; 113: 95-131, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-28842353

ABSTRACT

Recent developments in the prediction of local aerosol deposition in human lungs are driven by the fast development of computational simulations. Although such simulations provide results in unbeatable resolution, significant differences among distinct methods of calculation emphasize the need for highly precise experimental data in order to specify boundary conditions and for validation purposes. This paper reviews and critically evaluates available methods for the measurement of single and disperse two-phase flows for the study of respiratory airflow and deposition of inhaled particles, performed both in vivo and in replicas of airways. Limitations and possibilities associated with the experimental methods are discussed and aspects of the computational calculations that can be validated are indicated. The review classifies the methods into following categories: 1) point-wise and planar methods for velocimetry in the airways, 2) classic methods for the measurement of the regional distribution of inhaled particles, 3) standard medical imaging methods applicable to the measurement of the regional aerosol distribution and 4) emerging and nonconventional methods. All methods are described, applications in human airways studies are illustrated, and recommendations for the most useful applications of each method are given.


Subject(s)
Aerosols/chemistry , Computer Simulation , Drug Delivery Systems/methods , Laryngeal Masks , Lung/drug effects , Powders/chemistry , Administration, Inhalation , Chemistry, Pharmaceutical/methods , Humans , Hydrodynamics , Models, Biological , Nebulizers and Vaporizers , Particle Size , Permeability , Respiratory Tract Absorption
11.
Inhal Toxicol ; 29(3): 113-125, 2017 02.
Article in English | MEDLINE | ID: mdl-28470142

ABSTRACT

Inhalation of aerosols generated by electronic cigarettes leads to deposition of multiple chemical compounds in the human airways. In this work, an experimental method to determine regional deposition of multicomponent aerosols in an in vitro segmented, realistic human lung geometry was developed and applied to two aerosols, i.e. a monodisperse glycerol aerosol and a multicomponent aerosol. The method comprised the following steps: (1) lung cast model preparation, (2) aerosol generation and exposure, (3) extraction of deposited mass, (4) chemical quantification and (5) data processing. The method showed good agreement with literature data for the deposition efficiency when using a monodisperse glycerol aerosol, with a mass median aerodynamic diameter (MMAD) of 2.3 µm and a constant flow rate of 15 L/min. The highest deposition surface density rate was observed in the bifurcation segments, indicating inertial impaction deposition. The experimental method was also applied to the deposition of a nebulized multicomponent aerosol with a MMAD of 0.50 µm and a constant flow rate of 15 L/min. The deposited amounts of glycerol, propylene glycol and nicotine were quantified. The three analyzed compounds showed similar deposition patterns and fractions as for the monodisperse glycerol aerosol, indicating that the compounds most likely deposited as parts of the same droplets. The developed method can be used to determine regional deposition for multicomponent aerosols, provided that the compounds are of low volatility. The generated data can be used to validate aerosol deposition simulations and to gain insight in deposition of electronic cigarette aerosols in human airways.


Subject(s)
Aerosols/pharmacokinetics , Models, Anatomic , Respiratory System/metabolism , Administration, Inhalation , Glycerol/pharmacokinetics , Humans , Particle Size
12.
Biomech Model Mechanobiol ; 15(2): 447-69, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26163996

ABSTRACT

In this article, the results of numerical simulations using computational fluid dynamics (CFD) and a comparison with experiments performed with phase Doppler anemometry are presented. The simulations and experiments were conducted in a realistic model of the human airways, which comprised the throat, trachea and tracheobronchial tree up to the fourth generation. A full inspiration/expiration breathing cycle was used with tidal volumes 0.5 and 1 L, which correspond to a sedentary regime and deep breath, respectively. The length of the entire breathing cycle was 4 s, with inspiration and expiration each lasting 2 s. As a boundary condition for the CFD simulations, experimentally obtained flow rate distribution in 10 terminal airways was used with zero pressure resistance at the throat inlet. CCM+ CFD code (Adapco) was used with an SST k-ω low-Reynolds Number RANS model. The total number of polyhedral control volumes was 2.6 million with a time step of 0.001 s. Comparisons were made at several points in eight cross sections selected according to experiments in the trachea and the left and right bronchi. The results agree well with experiments involving the oscillation (temporal relocation) of flow structures in the majority of the cross sections and individual local positions. Velocity field simulation in several cross sections shows a very unstable flow field, which originates in the tracheal laryngeal jet and propagates far downstream with the formation of separation zones in both left and right airways. The RANS simulation agrees with the experiments in almost all the cross sections and shows unstable local flow structures and a quantitatively acceptable solution for the time-averaged flow field.


Subject(s)
Bronchi/physiology , Models, Biological , Numerical Analysis, Computer-Assisted , Pulmonary Ventilation/physiology , Respiration , Trachea/physiology , Biomechanical Phenomena , Humans , Time Factors
13.
Proc Inst Mech Eng H ; 229(10): 750-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26276348

ABSTRACT

Researchers have been studying aerosol transport in human lungs for some decades. The overall lung deposition can be predicted with sufficient precision nowadays. However, the prediction of local deposition remains an unsolved problem. Numerical modeling of aerosol transport can provide detailed data with such precision and spatial resolution which were unavailable in the past. Yet, the necessary validation of numerical results represents a difficult task, as the experimental data in a sufficient spatial resolution are hardly available. This article introduces a method based on positron emission tomography, which allows acquisition of detailed experimental data on local aerosol deposition in a realistic model of human lungs. The method utilizes the Condensation Monodisperse Aerosol Generator modified for a safe production of radioactive aerosol particles and a special measuring rig. The scanning of the model is performed on a positron emission tomography-computed tomography scanner. The evaluation of aerosol deposition is based on a volume radioactivity analysis in a specialized, yet publicly available software. The reliability of the method was tested and its first results are discussed in the article. The measurements performed using the presented method can serve for validation of numerical simulations, since the presented lung model digital geometry is available.


Subject(s)
Aerosols/administration & dosage , Aerosols/pharmacokinetics , Bronchi/metabolism , Models, Biological , Positron-Emission Tomography/methods , Trachea/metabolism , Bronchi/diagnostic imaging , Drug Delivery Systems , Humans , Male , Trachea/diagnostic imaging
14.
Proc Inst Mech Eng H ; 226(3): 197-207, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22558834

ABSTRACT

Numerous models of human lungs with various levels of idealization have been reported in the literature; consequently, results acquired using these models are difficult to compare to in vivo measurements. We have developed a set of model components based on realistic geometries, which permits the analysis of the effects of subsequent model simplification. A realistic digital upper airway geometry except for the lack of an oral cavity has been created which proved suitable both for computational fluid dynamics (CFD) simulations and for the fabrication of physical models. Subsequently, an oral cavity was added to the tracheobronchial geometry. The airway geometry including the oral cavity was adjusted to enable fabrication of a semi-realistic model. Five physical models were created based on these three digital geometries. Two optically transparent models, one with and one without the oral cavity, were constructed for flow velocity measurements, two realistic segmented models, one with and one without the oral cavity, were constructed for particle deposition measurements, and a semi-realistic model with glass cylindrical airways was developed for optical measurements of flow velocity and in situ particle size measurements. One-dimensional phase doppler anemometry measurements were made and compared to the CFD calculations for this model and good agreement was obtained.


Subject(s)
Lung/physiology , Models, Biological , Mouth/physiology , Pulmonary Gas Exchange/physiology , Respiratory Mechanics/physiology , Computer Simulation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...