Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 572: 118833, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31715363

ABSTRACT

Different types of in-situ forming implants based on poly(lactic-co-glycolic acid) (PLGA) for the controlled dual release of an antiseptic drug (chlorhexidine) and an anti-inflammatory drug (ibuprofen) were prepared and thoroughly characterized in vitro. N-methyl-pyrrolidone (NMP) was used as water-miscible solvent, acetyltributyl citrate (ATBC) as plasticizer and hydroxypropyl methylcellulose (HPMC) was added to enhance the implants' stickiness/bioadhesion upon formation within the periodontal pocket. Different drug forms exhibiting substantially different solubilities were used: chlorhexidine dihydrochloride and digluconate as well as ibuprofen free acid and lysinate. The initial drug loadings were varied from 1.5 to 16.1%. In vitro drug release, dynamic changes in the pH of the surrounding bulk fluid and in the systems' wet mass as well as polymer degradation were monitored. Importantly, the release of both drugs, chlorhexidine and ibuprofen, could effectively be controlled simultaneously during several weeks. Interestingly, the tremendous differences in the drug forms' solubilities (e.g., factor >5000) did not translate into major differences in the resulting release kinetics. In the case of ibuprofen, this can likely (at least in part) be attributed to significant drug-polymer interactions (ibuprofen acts as a plasticizer for PLGA). In the case of chlorhexidine, the release of the much less soluble dihydrochloride was even faster compared to the more soluble digluconate (when combined with ibuprofen free acid). In the case of ibuprofen, at higher initial drug loadings also limited solubility effects within the implants seem to play a role, in contrast to chlorhexidine. In the latter case, instead, increased system porosity effects likely dominate at higher drug loadings.


Subject(s)
Anti-Infective Agents, Local/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Chlorhexidine/administration & dosage , Ibuprofen/administration & dosage , Adhesiveness , Anti-Infective Agents, Local/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Chemistry, Pharmaceutical , Chlorhexidine/chemistry , Delayed-Action Preparations , Drug Combinations , Drug Implants , Drug Liberation , Excipients/chemistry , Ibuprofen/chemistry , Periodontal Diseases/drug therapy , Plasticizers/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Porosity , Solubility , Solvents/chemistry
2.
Int J Pharm ; 521(1-2): 282-293, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28223246

ABSTRACT

In-situ forming implants (ISFI) offer an interesting potential for the treatment of periodontitis, allowing for time-controlled drug release directly at the site of action (which is difficult to reach). For this purpose, ISFI loaded with antibiotics have been reported in the literature. But the use of antibiotic drugs at low doses over prolonged periods of time can lead to the development of bacterial resistances. This risk should be avoided. The aim of this study was to develop a novel type of in-situ forming implants, loaded with the antiseptic drug chlorhexidine. Special emphasis was placed on the physical properties of the systems, assuring a reliable residence time in the periodontal pockets of patients suffering from periodontitis. In particular, the risk of premature, accidental loss of the formulations due to mechanical stress (e.g. during tooth brushing and chewing) was to be reduced. Two commercially available drug products for local periodontitis treatment were studied for reasons of comparison: Chlo-site and Parocline. The syringeability and swelling behavior of the formulations were investigated, and the hardness, springiness, resilience and "stickiness" of the systems determined using extracted human teeth. Interestingly, the novel in-situ forming implants, based on PLGA/HPMC and being free of antibiotics, exhibit highly promising physical key properties: They are intensively sticking to teeth' surfaces and provide adequate mechanical strength to assure reliable and prolonged residence times in periodontal pockets. In contrast, the commercial drug products showed limited adhesion and either rapidly shrank (Chlo-site), or substantially swelled and were mechanically very weak (Parocline).


Subject(s)
Anti-Infective Agents, Local/administration & dosage , Chlorhexidine/administration & dosage , Drug Implants , Hypromellose Derivatives/chemistry , Lactic Acid/chemistry , Periodontitis/drug therapy , Polyglycolic Acid/chemistry , Adhesiveness , Humans , Polylactic Acid-Polyglycolic Acid Copolymer , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...