Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968576

ABSTRACT

The conversion of aryl halides to primary arylamines with a convenient and inexpensive source of ammonia has been a long-standing synthetic challenge. Aqueous ammonia would be the most convenient and least expensive form of ammonia, but such a palladium-catalyzed amination reaction with a high concentration of water faces challenges concerning catalyst stability and competing hydroxylation, and palladium-catalyzed reactions with this practical reagent are rare. Further, most reactions with ammonia to form primary amines are conducted with tert-butoxide base, but reactions with ammonium hydroxide would contain hydroxide as base. Thus, ammonia surrogates, ammonia in organic solvents, and ammonium salts have been used under anhydrous conditions instead with varying levels of selectivity for the primary amine. We report the palladium-catalyzed amination of aryl and heteroaryl chlorides and bromides with aqueous ammonia and a hydroxide base to form the primary arylamine with high selectivity. The palladium catalyst containing a new dialkyl biheteroaryl phosphine ligand (KPhos) suppresses both the formation of aryl alcohol and diarylamine side products. Mechanistic studies with a soluble hydroxide base revealed turnover-limiting reductive elimination of the arylamine and an equilibrium between arylpalladium amido and hydroxo complexes prior to the turnover-limiting step.

2.
J Am Chem Soc ; 145(39): 21527-21537, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37733607

ABSTRACT

Polyethylene is a commodity material that is widely used because of its low cost and valuable properties. However, the lack of functional groups in polyethylene limits its use in applications that include adhesives, gas barriers, and plastic blends. The inertness of polyethylene makes it difficult to install groups that would enhance its properties and enable programmed chemical decomposition. To overcome these deficiencies, the installation of pendent functional groups that imbue polyethylene with enhanced properties is an attractive strategy to overcome its inherent limitations. Here, we describe strategies to derivatize oxidized polyethylene that contains both ketones and alcohols to monofunctional variants with bulk properties superior to those of unmodified polyethylene. Iridium-catalyzed transfer dehydrogenation with acetone furnished polyethylenes with only ketones, and ruthenium-catalyzed hydrogenation with hydrogen furnished polyethylenes with only alcohols. We demonstrate that the ratio of these functional groups can be controlled by reduction with stoichiometric hydride-containing reagents. The ketones and alcohols serve as sites to introduce esters and oximes onto the polymer, thereby improving surface and bulk properties over those of polyethylene. These esters and oximes were removed by hydrolysis to regenerate the original oxygenated polyethylenes, showing how functionalization can lead to materials with circularity. Waste polyethylenes were equally amenable to oxidative functionalization and derivatization of the oxidized material, showing that this low- or negative-value feedstock can be used to prepare materials of higher value. Finally, the derivatized polymers with distinct solubilities were separated from mechanically mixed plastic blends by selective dissolution, demonstrating that functionalization can lead to novel approaches for distinguishing and separating polymers from a mixture.

3.
Science ; 381(6665): 1433-1440, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37769088

ABSTRACT

Functional polyethylenes possess valuable bulk and surface properties, but the limits of current synthetic methods narrow the range of accessible materials and prevent many envisioned applications. Instead, these materials are often used in composite films that are challenging to recycle. We report a Cu-catalyzed amination of polyethylenes to form mono- and bifunctional materials containing a series of polar groups and substituents. Designed catalysts with hydrophobic moieties enable the amination of linear and branched polyethylenes without chain scission or cross-linking, leading to polyethylenes with otherwise inaccessible combinations of functional groups and architectures. The resulting materials possess tunable bulk and surface properties, including toughness, adhesion to metal, paintability, and water solubility, which could unlock applications for functional polyethylenes and reduce the need for complex composites.

4.
Nano Lett ; 23(14): 6637-6644, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37406363

ABSTRACT

High-entropy alloy (HEA) nanoparticles are promising catalyst candidates for the acidic oxygen evolution reaction (OER). Herein, we report the synthesis of IrFeCoNiCu-HEA nanoparticles on a carbon paper substrate via a microwave-assisted shock synthesis method. Under OER conditions in 0.1 M HClO4, the HEA nanoparticles exhibit excellent activity with an overpotential of ∼302 mV measured at 10 mA cm-2 and improved stability over 12 h of operation compared to the monometallic Ir counterpart. Importantly, an active Ir-rich shell layer with nanodomain features was observed to form on the surface of IrFeCoNiCu-HEA nanoparticles immediately after undergoing electrochemical activation, mainly due to the dissolution of the constituent 3d metals. The core of the particles was able to preserve the characteristic homogeneous single-phase HEA structure without significant phase separation or elemental segregation. This work illustrates that under acidic operating conditions, the near-surface structure of HEA nanoparticles is susceptible to a certain degree of structural dynamics.

5.
Adv Mater ; 24(4): 543-8, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22213088

ABSTRACT

The preparation of materials characterized by three types of porosity could be prepared by a continuous chemical gas-phase method. The multistep formation mechanism involves a critical temperature gradient and occurs within seconds. The resulting hollow aerogel materials show superior properties as gas sensors in comparison to materials constructed from compact nanoparticles.


Subject(s)
Chemistry Techniques, Synthetic/methods , Gases/chemistry , Temperature , Zinc Oxide/chemistry , Zinc Oxide/chemical synthesis , Kinetics , Porosity
6.
J Am Chem Soc ; 132(14): 5315-21, 2010 Apr 14.
Article in English | MEDLINE | ID: mdl-20302305

ABSTRACT

The main ability of amphiphilic molecules is to alter the energy of interfaces. They aid in the formation of various materials characterized by a high surface to volume ratio. Furthermore, amphiphiles tend to self-organize into structures of higher complexity. In the current study anionic surfactants containing a purely inorganic multinuclear head group of the polytungstate type R-[PW(11)O(39)](3-) were synthesized. Alkyl chains of different length were attached to the head group via siloxy bridges. Furthermore, the counterions could be varied. Ultimately, a heteropolyacid surfactant (H(+) as the counterion) could be prepared. The self-assembly behavior of the polyoxometalate surfactants into micelles and even lyotropic phases was studied. For instance, the formation of a phase with P6/mm symmetry containing hexagonally packed cylinders has been observed. Finally, it was possible to extend the functionality of classical amphiphiles. The polyoxometalate amphiphiles have been used for the emulsification of and, at the same time, as the initiator for the cationic polymerization of styrene. As a result, interesting organic-inorganic hybrid polymer latexes with surfaces containing heteropolyacid entities were prepared.


Subject(s)
Surface-Active Agents/chemistry , Micelles , Models, Molecular , Particle Size , Surface Properties , Surface-Active Agents/chemical synthesis
7.
Dalton Trans ; 39(9): 2232-8, 2010 Mar 07.
Article in English | MEDLINE | ID: mdl-20162196

ABSTRACT

Zinc oxide has become one of the most important semiconductor materials and it possesses a multitude of properties and applications. An even wider spectrum of properties can be envisioned if an additional element is introduced. On the cation side there is large interest in the combination of ZnO with paramagnetic metal centres like Cr(III). Two new single source precursors containing "ZnO" and chromium in the ratios 1 : 1 and 1 : 2 are presented. Advantages and disadvantages of using these precursors are reported. One of the advantages is that the geometric organization of the magnetic centres in the ZnO matrix can be preorganized on the molecular scale.


Subject(s)
Chromium/chemistry , Organometallic Compounds/chemistry , Zinc Oxide/chemistry , Magnetics , Molecular Structure , Organometallic Compounds/chemical synthesis , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...