Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Braz. j. med. biol. res ; 43(5): 492-499, May 2010. ilus
Article in English | LILACS | ID: lil-546339

ABSTRACT

Chronic lead exposure induces hypertension in humans and animals, affecting endothelial function. However, studies concerning acute cardiovascular effects are lacking. We investigated the effects of acute administration of a high concentration of lead acetate (100 µÌ) on the pressor response to phenylephrine (PHE) in the tail vascular bed of male Wistar rats. Animals were anesthetized with sodium pentobarbital and heparinized. The tail artery was dissected and cannulated for drug infusion and mean perfusion pressure measurements. Endothelium and vascular smooth muscle relaxation were tested with acetylcholine (5 µg/100 µL) and sodium nitroprusside (0.1 µg/100 µL), respectively, in arteries precontracted with 0.1 µM PHE. Concentration-response curves to PHE (0.001-300 µg/100 µL) were constructed before and after perfusion for 1 h with 100 µÌ lead acetate. In the presence of endothelium (E+), lead acetate increased maximal response (Emax) (control: 364.4 ± 36, Pb2+: 480.0 ± 27 mmHg; P < 0.05) and the sensitivity (pD2; control: 1.98 ± 0.07, 2.38 ± 0.14 log mM) to PHE. In the absence of endothelium (E-) lead had no effect but increased baseline perfusion pressure (E+: 79.5 ± 2.4, E-: 118 ± 2.2 mmHg; P < 0.05). To investigate the underlying mechanisms, this protocol was repeated after treatment with 100 µM L-NAME, 10 µM indomethacin and 1 µM tempol in the presence of lead. Lead actions on Emax and pD2 were abolished in the presence of indomethacin, and partially abolished with L-NAME and tempol. Results suggest that acute lead administration affects the endothelium, releasing cyclooxygenase-derived vasoconstrictors and involving reactive oxygen species.


Subject(s)
Animals , Male , Rats , Endothelium, Vascular/drug effects , Organometallic Compounds/pharmacology , Tail/blood supply , Vasoconstriction/drug effects , Endothelium, Vascular/physiology , Organometallic Compounds/administration & dosage , Phenylephrine/pharmacology , Rats, Wistar
2.
Braz J Med Biol Res ; 43(5): 492-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20396857

ABSTRACT

Chronic lead exposure induces hypertension in humans and animals, affecting endothelial function. However, studies concerning acute cardiovascular effects are lacking. We investigated the effects of acute administration of a high concentration of lead acetate (100 microMu) on the pressor response to phenylephrine (PHE) in the tail vascular bed of male Wistar rats. Animals were anesthetized with sodium pentobarbital and heparinized. The tail artery was dissected and cannulated for drug infusion and mean perfusion pressure measurements. Endothelium and vascular smooth muscle relaxation were tested with acetylcholine (5 microg/100 microL) and sodium nitroprusside (0.1 microg/100 microL), respectively, in arteries precontracted with 0.1 microM PHE. Concentration-response curves to PHE (0.001-300 microg/100 microL) were constructed before and after perfusion for 1 h with 100 microMu lead acetate. In the presence of endothelium (E(+)), lead acetate increased maximal response (E(max)) (control: 364.4 +/- 36, Pb2(+): 480.0 +/- 27 mmHg; P < 0.05) and the sensitivity (pD(2); control: 1.98 +/- 0.07, 2.38 +/- 0.14 log mM) to PHE. In the absence of endothelium (E(-)) lead had no effect but increased baseline perfusion pressure (E(+): 79.5 +/- 2.4, E-: 118 +/- 2.2 mmHg; P < 0.05). To investigate the underlying mechanisms, this protocol was repeated after treatment with 100 microM L-NAME, 10 microM indomethacin and 1 microM tempol in the presence of lead. Lead actions on E(max) and pD(2) were abolished in the presence of indomethacin, and partially abolished with L-NAME and tempol. Results suggest that acute lead administration affects the endothelium, releasing cyclooxygenase-derived vasoconstrictors and involving reactive oxygen species.


Subject(s)
Endothelium, Vascular/drug effects , Organometallic Compounds/pharmacology , Tail/blood supply , Vasoconstriction/drug effects , Animals , Endothelium, Vascular/physiology , Male , Organometallic Compounds/administration & dosage , Phenylephrine/pharmacology , Rats , Rats, Wistar
3.
Clin Exp Pharmacol Physiol ; 35(7): 782-7, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18430048

ABSTRACT

1. Postexercise hypotension (PEH) plays an important role in the non-pharmacological treatment of hypertension. It is characterized by a decrease in blood pressure (BP) after a single bout of exercise in relation to pre-exercise levels. 2. The present study investigated the effect of a single session of resistance exercise, as well as the effect of nitric oxide (NO) and the autonomic nervous system (ANS), in PEH in spontaneously hypertensive rats (SHR). 3. Catheters were inserted into the left carotid artery and left jugular vein of male SHR (n = 37) for the purpose of measuring BP or heart rate (HR) and drug or vehicle administration, respectively. Haemodynamic measurements were made before and after acute resistance exercise. The roles of NO and the ANS were investigated by using N(G)-nitro-L-arginine methyl ester (L-NAME; 15 mg/kg, i.v.) and hexamethonium (20 mg/kg, i.v.) after a session of acute resistance exercise. 4. Acute resistance exercise promoted a pronounced reduction in systolic and diastolic BP (-37 +/- 1 and -8 +/- 1 mmHg, respectively; P < 0.05), which was suppressed after treatment with L-NAME. The reduction in systolic BP caused by exercise (-37 +/- 1 mmHg) was not altered by the administration of hexamethonium (-38 +/- 2 mmHg; P > 0.05). After exercise, the decrease in diastolic BP was greater with hexamethonium (-26 +/- 1 mmHg; P < 0.05) compared with the decrease caused by exercise alone. 5. The results suggest that acute resistance exercise has an important hypotensive effect on SHR and that NO plays a crucial role in this response.


Subject(s)
Hypertension/physiopathology , Hypotension/physiopathology , Nitric Oxide/physiology , Physical Conditioning, Animal/methods , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Hexamethonium/pharmacology , Hexamethonium/therapeutic use , Hypertension/drug therapy , Hypertension/therapy , Hypotension/etiology , Male , NG-Nitroarginine Methyl Ester/pharmacology , Rats , Rats, Inbred SHR
SELECTION OF CITATIONS
SEARCH DETAIL
...