Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38260367

ABSTRACT

Fibroadipogenic progenitors (FAPs) maintain healthy skeletal muscle in homeostasis but drive muscle degeneration in chronic injuries by promoting adipogenesis and fibrosis. To uncover how these stem cells switch from a pro-regenerative to pro-degenerative role we perform single-cell mRNA sequencing of human FAPs from healthy and injured human muscles across a spectrum of injury, focusing on rotator cuff tears. We identify multiple subpopulations with progenitor, adipogenic, or fibrogenic gene signatures. We utilize full spectrum flow cytometry to identify distinct FAP subpopulations based on highly multiplexed protein expression. Injury severity increases adipogenic commitment of FAP subpopulations and is driven by the downregulation of DLK1. Treatment of FAPs both in vitro and in vivo with DLK1 reduces adipogenesis and fatty infiltration, suggesting that during injury, reduced DLK1 within a subpopulation of FAPs may drive degeneration. This work highlights how stem cells perform varied functions depending on tissue context, by dynamically regulating subpopulation fate commitment, which can be targeted improve patient outcomes after injury.

2.
Am J Sports Med ; 52(2): 451-460, 2024 02.
Article in English | MEDLINE | ID: mdl-38174367

ABSTRACT

BACKGROUND: Rotator cuff muscle degeneration leads to poor clinical outcomes for patients with rotator cuff tears. Fibroadipogenic progenitors (FAPs) are resident muscle stem cells with the ability to differentiate into fibroblasts as well as white and beige adipose tissue. Induction of the beige adipose phenotype in FAPs has been shown to improve muscle quality after rotator cuff tears, but the mechanisms of how FAPs exert their beneficial effects have not been fully elucidated. PURPOSE: To study the horizontal transfer of mitochondria from FAPs to myogenic cells and examine the effects of ß-agonism on this novel process. STUDY DESIGN: Controlled laboratory study. METHODS: In mice that had undergone a massive rotator cuff tear, single-cell RNA sequencing was performed on isolated FAPs for genes associated with mitochondrial biogenesis and transfer. Murine FAPs were isolated by fluorescence-activated cell sorting and treated with a ß-agonist versus control. FAPs were stained with mitochondrial dyes and cocultured with recipient C2C12 myoblasts, and the rate of transfer was measured after 24 hours by flow cytometry. PdgfraCreERT/MitoTag mice were generated to study the effects of a rotator cuff injury on mitochondrial transfer. PdgfraCreERT/tdTomato mice were likewise generated to perform lineage tracing of PDGFRA+ cells in this injury model. Both populations of transgenic mice underwent tendon transection and denervation surgery, and MitoTag-labeled mitochondria from Pdgfra+ FAPs were visualized by fluorescent microscopy, spinning disk confocal microscopy, and 2-photon microscopy; overall mitochondrial quantity was compared between mice treated with ß-agonists and dimethyl sulfoxide. RESULTS: Single-cell RNA sequencing in mice that underwent rotator cuff tear demonstrated an association between transcriptional markers of adipogenic differentiation and genes associated with mitochondrial biogenesis. In vitro cocultures of murine FAPs with C2C12 cells revealed that treatment of cells with a ß-agonist increased mitochondrial transfer compared to control conditions (17.8% ± 9.9% to 99.6% ± 0.13% P < .0001). Rotator cuff injury in PdgfraCreERT/MitoTag mice resulted in a robust increase in MitoTag signal in adjacent myofibers compared with uninjured mice. No accumulation of tdTomato signal from PDGFRA+ cells was seen in injured fibers at 6 weeks after injury, suggesting that FAPs do not fuse with injured muscle fibers but rather contribute their mitochondria. CONCLUSION: The authors have described a novel process of endogenous mitochondrial transfer that can occur within the injured rotator cuff between FAPs and myogenic cells. This process may be leveraged therapeutically with ß-agonist treatment and represents an exciting target for improving translational therapies available for rotator cuff muscle degeneration. CLINICAL RELEVANCE: Promoting endogenous mitochondrial transfer may represent a novel translational strategy to address muscle degeneration after rotator cuff tears.


Subject(s)
Red Fluorescent Protein , Rotator Cuff Injuries , Humans , Mice , Animals , Rotator Cuff Injuries/surgery , Rotator Cuff/surgery , Mice, Transgenic , Muscular Atrophy/pathology , Mitochondria
5.
Cureus ; 15(3): e36700, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37113368

ABSTRACT

Takotsubo cardiomyopathy or stress-induced cardiomyopathy is a particular entity with a transient left ventricular dysfunction without significant coronary artery obstruction, preceded by a stressful circumstance. Clinical presentation may mimic myocardial infarction, acute heart failure among the most common conditions. If suspected, the integration of clinical aspects, imaging results, and laboratory tests allows its diagnosis and proper management. Once described as a post-menopausal women's disease, is now recognized as a more frequent condition of young women, especially after stressful conditions such as post-surgical status and peripartum period, rendering as a disease with a certain predisposition to female patients, with a not always benign evolution. This case remarks an atypical presentation experiencing a first nigh fatal evolution but a later satisfactory recuperation.

6.
JCI Insight ; 7(22)2022 11 22.
Article in English | MEDLINE | ID: mdl-36509289

ABSTRACT

A hallmark of HIV-1 infection is chronic inflammation, even in patients treated with antiretroviral therapy (ART). Chronic inflammation drives HIV-1 pathogenesis, leading to loss of CD4+ T cells and exhaustion of antiviral immunity. Therefore, strategies to safely reduce systematic inflammation are needed to halt disease progression and restore defective immune responses. Autophagy is a cellular mechanism for disposal of damaged organelles and elimination of intracellular pathogens. Autophagy is pivotal for energy homeostasis and plays critical roles in regulating immunity. However, how it regulates inflammation and antiviral T cell responses during HIV infection is unclear. Here, we demonstrate that autophagy is directly linked to IFN-I signaling, which is a key driver of immune activation and T cell exhaustion during chronic HIV infection. Impairment of autophagy leads to spontaneous IFN-I signaling, and autophagy induction reduces IFN-I signaling in monocytic cells. Importantly, in HIV-1-infected humanized mice, autophagy inducer rapamycin treatment significantly reduced persistent IFN-I-mediated inflammation and improved antiviral T cell responses. Cotreatment of rapamycin with ART led to significantly reduced viral rebound after ART withdrawal. Taken together, our data suggest that therapeutically targeting autophagy is a promising approach to treat persistent inflammation and improve immune control of HIV replication.


Subject(s)
HIV Infections , HIV-1 , Interferon Type I , Mice , Animals , Sirolimus/pharmacology , Sirolimus/therapeutic use , Autophagy
9.
J Vis Exp ; (188)2022 10 06.
Article in English | MEDLINE | ID: mdl-36282697

ABSTRACT

The human immunodeficiency virus (HIV-1) pandemic continues to spread unabated worldwide, and currently, there is no vaccine available against HIV. Although combinational antiretroviral therapy (cART) has been successful in suppressing viral replication, it cannot completely eradicate the reservoir from HIV-infected individuals. A safe and effective cure strategy for HIV infection will require multipronged methods, and therefore the advancements of animal models for HIV-1 infection are pivotal for the development of HIV cure research. Humanized mice recapitulate key features of HIV-1 infection. The humanized mouse model can be infected by HIV-1 and viral replication can be controlled with cART regimens. Moreover, cART interruption results in a prompt viral rebound in humanized mice. However, administration of cART to the animal can be ineffective, difficult, or toxic, and many clinically relevant cART regimens are unable to be optimally utilized. Along with being potentially unsafe for researchers, administration of cART by a commonly used intensive daily injection procedure induces stress by physical restraint of the animal. The novel oral cART method to treat HIV-1 infected humanized mice described in this article resulted in suppression of viremia below the detection level, increased rate of CD4+ restoration, and improved overall health in HIV-1 infected humanized mice.


Subject(s)
HIV Infections , HIV-1 , Mice , Humans , Animals , HIV Infections/drug therapy , Anti-Retroviral Agents/therapeutic use , Anti-Retroviral Agents/pharmacology , Viremia/drug therapy , Virus Replication , Viral Load , CD4-Positive T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...