Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 6324, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34732726

ABSTRACT

Mutations in the cardiac splicing factor RBM20 lead to malignant dilated cardiomyopathy (DCM). To understand the mechanism of RBM20-associated DCM, we engineered isogenic iPSCs with DCM-associated missense mutations in RBM20 as well as RBM20 knockout (KO) iPSCs. iPSC-derived engineered heart tissues made from these cell lines recapitulate contractile dysfunction of RBM20-associated DCM and reveal greater dysfunction with missense mutations than KO. Analysis of RBM20 RNA binding by eCLIP reveals a gain-of-function preference of mutant RBM20 for 3' UTR sequences that are shared with amyotrophic lateral sclerosis (ALS) and processing-body associated RNA binding proteins (FUS, DDX6). Deep RNA sequencing reveals that the RBM20 R636S mutant has unique gene, splicing, polyadenylation and circular RNA defects that differ from RBM20 KO. Super-resolution microscopy verifies that mutant RBM20 maintains very limited nuclear localization potential; rather, the mutant protein associates with cytoplasmic processing bodies (DDX6) under basal conditions, and with stress granules (G3BP1) following acute stress. Taken together, our results highlight a pathogenic mechanism in cardiac disease through splicing-dependent and -independent pathways.


Subject(s)
Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Gain of Function Mutation , Mutation , RNA Splicing , RNA-Binding Proteins/genetics , Ribonucleoproteins/metabolism , Cardiomyopathy, Dilated/genetics , DEAD-box RNA Helicases , DNA Helicases , Gene Knockdown Techniques , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Mutation, Missense , Poly-ADP-Ribose Binding Proteins/metabolism , Proto-Oncogene Proteins , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism
2.
Nat Methods ; 11(3): 291-3, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24509632

ABSTRACT

Precise editing of human genomes in pluripotent stem cells by homology-driven repair of targeted nuclease-induced cleavage has been hindered by the difficulty of isolating rare clones. We developed an efficient method to capture rare mutational events, enabling isolation of mutant lines with single-base substitutions without antibiotic selection. This method facilitates efficient induction or reversion of mutations associated with human disease in isogenic human induced pluripotent stem cells.


Subject(s)
Cytological Techniques/methods , Genome, Human , Induced Pluripotent Stem Cells/cytology , Anti-Bacterial Agents/pharmacology , Base Composition/genetics , Cell Line , Cloning, Molecular , Humans , Induced Pluripotent Stem Cells/drug effects , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...