Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Toxicol In Vitro ; 29(7): 1906-15, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26247324

ABSTRACT

Common water pollutants, azo dyes and their degradation products have frequently shown toxicity, including carcinogenic and mutagenic effects, and can induce serious damage in aquatic organisms and humans. In the present study, the mutagenic potential of the azo dye Disperse Red 13 (DR13) was first evaluated using the Micronucleus Assay in human lymphocytes. Subsequently, in order to mimic hepatic biotransformation, controlled potential electrolysis was carried out with a DR13 solution using a Potentiostat/Galvanostat. In addition, a DR13 solution was oxidized using S9 (homogenate of rat liver cells). DR13 oxidation and the reduction products were identified using HPLC-DAD and GC/MS, and their mutagenic potential investigated by way of a Salmonella/microsome assay using TA98 and YG1041 strains, with no S9. The original azo dye DR13 induced chromosomal damage in human lymphocytes, and the respective oxidation and reduction products also showed mutagenic activity, as detected by the Salmonella/microsome assay. Furthermore sulfate 2-[(4-aminophenyl)ethylamino]-ethanol monohydrate, 2-chloro-4-nitro-benzamine, 4-nitro-benzamine and 2-(ethylphenylamine)-ethanol were identified as products of the DR13 reduction/oxidation reactions. Thus it was concluded that the contamination of water effluents with DR13 is a health risk not only due to the dye itself, but also due to the possibility of drinking contaminated water, considering the harmful compounds that can be produced after hepatic biotransformation.


Subject(s)
Azo Compounds/toxicity , Coloring Agents/toxicity , Mutagens/toxicity , Water Pollutants, Chemical/toxicity , Cells, Cultured , Humans , Lymphocytes/drug effects , Mutagenicity Tests , Oxidation-Reduction , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics
2.
Article in English | MEDLINE | ID: mdl-25726175

ABSTRACT

Quinoline yellow (QY) is a chinophthalon derivative used in cosmetic compositions for application to the skin, lips, and/or body surface. However, regulatory data about the genotoxicity and/or mutagenicity of this compound are still controversial. Therefore, this work evaluated the genotoxicity of QY using the comet assay and the cytokinesis-block micronucleus cytome assay (CBMN-Cyt) in the metabolically competent cell line HepG2, which closely mimics phase I metabolism. This research also identified the products formed after electrochemical oxidation of the QY dye, which simulates hepatic biotransformation. The primary products generated after the oxidation process were analyzed by High Performance Liquid Chromatography coupled with a Diode Array Detector (HPLC/DAD), which detected the production of 4,4'-diaminodiphenylmethane, 2-methoxy-5-methylaniline and 4,4'-oxydianiline. The results demonstrated that low (from 0.5 to 20 µg mL(-1)) QY concentrations were genotoxic in HepG2 cells on both assays and those harmful compounds were detected after the oxidation process. Our findings suggest that this colorant could cause harmful effects to humans if it is metabolized or absorbed through the skin.


Subject(s)
Aniline Compounds/metabolism , Coloring Agents/toxicity , Mutagens/toxicity , Quinolines/toxicity , Biotransformation , Cell Survival/drug effects , Coloring Agents/analysis , Coloring Agents/metabolism , Comet Assay , Cosmetics/chemistry , DNA Damage , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Micronucleus Tests , Mutagens/analysis , Mutagens/metabolism , Oxidation-Reduction , Quinolines/analysis , Quinolines/metabolism
3.
Molecules ; 17(7): 7961-79, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22751261

ABSTRACT

The room temperature ionic liquid (IL) 1-butyl-3-methylimidazolium bis-(trifluorometanesulfonyl)imide BMIm[NTf2] was used as a novel medium for improvement of separation and quantization of 16 aromatic amines typically present as contaminants in consumer products and detected by HPLC coupled to an electrochemical detector. The aromatic amines, namely 4,4'-diaminodiphenylmethane, 4-chloroaniline, 2-methoxy-5-methyl-aniline, 3,3'-dimethylbenzidine, 2,4-diaminotoluidine, 2-chloro-4-nitroaniline, 4,4'-oxydianiline, aniline, 3,3'-ichlorobenzidine, benzidine, 4-aminobiphenyl, o-dianisidine, o-anisidine, o-toluidine, 4,4'-methylene-bis-2-chloroaniline and 2-naphthylamine are oxidized in methanol/BMIm[NTf2] at a potential around +0.68V to +0.93V vs. Ag/AgCl at a glassy carbon electrode, which is the base for their determination by HPLC/ED. Using the optimized conditions of methanol/BMIm[NTf2] 70:30 (v/v) as mobile phase, flow-rate of 0.8 mL·min⁻¹, column CLC-ODS, Eap = +1.0 V and T = 40 °C analytical curves were constructed for each of the tested amines. Good linearity was obtained in the concentration range of 1.09 mg·L⁻¹ to 217 mg·L⁻¹, with excellent correlation coefficients. The limits of detection reached 0.021 mg·L⁻¹ to 0.246 mg·L⁻¹ and good relative standard deviations (RSD, n = 3) were obtained from the measurements. Satisfactory recovery for each aromatic amine was achieved, ranging from 95 to 103%. The developed method was successfully applied to determine six aromatic amines present as contaminants in commercial hair dye samples.


Subject(s)
Amines/analysis , Chromatography, High Pressure Liquid/methods , Drug Contamination , Electrochemical Techniques/methods , Hair Dyes/chemistry , Hydrocarbons, Aromatic/analysis , Imidazoles/chemistry , Ionic Liquids/chemistry , Sulfonamides/chemistry , Electrodes , Hydrodynamics , Oxidation-Reduction , Reference Standards , Solutions
4.
Toxicol In Vitro ; 25(8): 2054-63, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21907275

ABSTRACT

Azo dyes constitute the largest class of synthetic dyes. Following oral exposure, these dyes can be reduced to aromatic amines by the intestinal microflora or liver enzymes. This work identified the products formed after oxidation and reduction of the dye Disperse Red 1, simulating hepatic biotransformation and evaluated the mutagenic potential of the resultant solution. Controlled potential electrolysis was carried out on dye solution using a Potentiostat/Galvanostat. HPLC-DAD and GC/MS were used to determine the products generated after the oxidation/reduction process. The Salmonella/microsome assay with the strains TA98 and YG1041 without S9, and the mouse lymphoma assay (MLA) using the thymidine kinase (Tk) gene, were used to evaluate the mutagenicity of the products formed. Sulfate 2-[(4-aminophenyl)ethylamino]-ethanol monohydrate, nitrobenzene, 4-nitro-benzamine and 2-(ethylphenylamino)-ethanol were detected. This dye has already being assigned as mutagenic in different cell system. In addition, after the oxidation/reduction process the dye still had mutagenic activity for the Salmonella/microsome assay. Nevertheless, both the original dye Disperse Red 1 and its treated solutions showed negative results in the MLA. The present results suggest that the ingestion of water and food contaminated with this dye may represent human and environmental health problem, due to the generation of harmful compounds after biotransformation.


Subject(s)
Azo Compounds/toxicity , Coloring Agents/toxicity , Mutagens/toxicity , Animals , Azo Compounds/chemistry , Azo Compounds/metabolism , Biotransformation , Cell Line, Tumor , Chromatography, High Pressure Liquid , Coloring Agents/chemistry , Coloring Agents/metabolism , Electrolysis , Gas Chromatography-Mass Spectrometry , Mice , Mutagenicity Tests , Mutagens/chemistry , Mutagens/metabolism , Oxidation-Reduction , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL