Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37571501

ABSTRACT

Optimizing the performance of heating, ventilation, and air-conditioning (HVAC) systems is critical in today's energy-conscious world. Fan coil units (FCUs) play a critical role in providing comfort in various environments as an important component of HVAC systems. However, FCUs often experience failures that affect their efficiency and increase their energy consumption. In this context, deep learning (DL)-based fault detection offers a promising solution. By detecting faults early and preventing system failures, the efficiency of FCUs can be improved. This paper explores DL models as fault detectors for FCUs to enable smarter and more energy-efficient hotel buildings. We tested three contemporary DL modeling approaches: convolutional neural network (CNN), long short-term memory network (LSTM), and a combination of CNN and gated recurrent unit (GRU). The random forest model (RF) was additionally developed as a baseline benchmark. The fault detectors were tested on a real-world dataset obtained from the sensory measurement system installed in a hotel and additionally supplemented with simulated data via a physical model developed in TRNSYS. Three representative FCU faults, namely, a stuck valve, a reduction in airflow, and an FCU outage, were simulated with a much larger dataset than is typically utilized in similar studies. The results showed that the hybrid model, integrating CNN and GRU, performed best for all three observed faults. DL-based fault detectors outperformed the baseline RF model, confirming these solutions as viable components for energy-efficient hotels.

2.
Sensors (Basel) ; 23(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37299791

ABSTRACT

Motor imagery (MI) is a technique of imagining the performance of a motor task without actually using the muscles. When employed in a brain-computer interface (BCI) supported by electroencephalographic (EEG) sensors, it can be used as a successful method of human-computer interaction. In this paper, the performance of six different classifiers, namely linear discriminant analysis (LDA), support vector machine (SVM), random forest (RF), and three classifiers from the family of convolutional neural networks (CNN), is evaluated using EEG MI datasets. The study investigates the effectiveness of these classifiers on MI, guided by a static visual cue, dynamic visual guidance, and a combination of dynamic visual and vibrotactile (somatosensory) guidance. The effect of filtering passband during data preprocessing was also investigated. The results show that the ResNet-based CNN significantly outperforms the competing classifiers on both vibrotactile and visually guided data when detecting different directions of MI. Preprocessing the data using low-frequency signal features proves to be a better solution to achieve higher classification accuracy. It has also been shown that vibrotactile guidance has a significant impact on classification accuracy, with the associated improvement particularly evident for architecturally simpler classifiers. These findings have important implications for the development of EEG-based BCIs, as they provide valuable insight into the suitability of different classifiers for different contexts of use.


Subject(s)
Brain-Computer Interfaces , Imagery, Psychotherapy , Humans , Neural Networks, Computer , Electroencephalography/methods , Support Vector Machine , Algorithms
3.
Sensors (Basel) ; 23(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36616600

ABSTRACT

Heating, ventilation, and air conditioning (HVAC) systems are a popular research topic because buildings' energy is mostly used for heating and/or cooling. These systems heavily rely on sensory measurements and typically make an integral part of the smart building concept. As such, they require the implementation of fault detection and diagnosis (FDD) methodologies, which should assist users in maintaining comfort while consuming minimal energy. Despite the fact that FDD approaches are a well-researched subject, not just for improving the operation of HVAC systems but also for a wider range of systems in industrial processes, there is a lack of application in commercial buildings due to their complexity and low transferability. The aim of this review paper is to present and systematize cutting-edge FDD methodologies, encompassing approaches and special techniques that can be applied in HVAC systems, as well as to provide best-practice heuristics for researchers and solution developers in this domain. While the literature analysis targets the FDD perspective, the main focus is put on the data-driven approach, which covers commonly used models and data pre-processing techniques in the field. Data-driven techniques and FDD solutions based on them, which are most commonly used in recent HVAC research, form the backbone of our study, while alternative FDD approaches are also presented and classified to properly contextualize and round out the review.


Subject(s)
Air Pollution, Indoor , Heating , Air Pollution, Indoor/analysis , Ventilation , Air Conditioning
4.
Sensors (Basel) ; 21(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925186

ABSTRACT

In this paper, we investigate the possibilities for augmenting interaction around the mobile device, with the aim of enabling input techniques that do not rely on typical touch-based gestures. The presented research focuses on utilizing a built-in magnetic field sensor, whose readouts are intentionally affected by moving a strong permanent magnet around a smartphone device. Different approaches for supporting magnet-based Around-Device Interaction are applied, including magnetic field fingerprinting, curve-fitting modeling, and machine learning. We implemented the corresponding proof-of-concept applications that incorporate magnet-based interaction. Namely, text entry is achieved by discrete positioning of the magnet within a keyboard mockup, and free-move pointing is enabled by monitoring the magnet's continuous movement in real-time. The related solutions successfully expand both the interaction language and the interaction space in front of the device without altering its hardware or involving sophisticated peripherals. A controlled experiment was conducted to evaluate the provided text entry method initially. The obtained results were promising (text entry speed of nine words per minute) and served as a motivation for implementing new interaction modalities. The use of neural networks has shown to be a better approach than curve fitting to support free-move pointing. We demonstrate how neural networks with a very small number of input parameters can be used to provide highly usable pointing with an acceptable level of error (mean absolute error of 3 mm for pointer position on the smartphone display).

5.
Sensors (Basel) ; 20(21)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158151

ABSTRACT

Accurate, inexpensive, and reliable real-time indoor localization holds the key to the full potential of the context-aware applications and location-based Internet of Things (IoT) services. State-of-the-art indoor localization systems are coping with the complex non-line-of-sight (NLOS) signal propagation which hinders the use of proven multiangulation and multilateration methods, as well as with prohibitive installation costs, computational demands, and energy requirements. In this paper, we present a novel sensor utilizing low-range infrared (IR) signal in the line-of-sight (LOS) context providing high precision angle-of-arrival (AoA) estimation. The proposed sensor is used in the pragmatic solution to the localization problem that avoids NLOS propagation issues by exploiting the powerful concept of the wireless sensor network (WSN). To demonstrate the proposed solution, we applied it in the challenging context of the supermarket cart navigation. In this specific use case, a proof-of-concept navigation system was implemented with the following components: IR-AoA sensor prototype and the corresponding WSN used for cart localization, server-side application programming interface (API), and client application suite consisting of smartphone and smartwatch applications. The localization performance of the proposed solution was assessed in, altogether, four evaluation procedures, including both empirical and simulation settings. The evaluation outcomes are ranging from centimeter-level accuracy achieved in static-1D context up to 1 m mean localization error obtained for a mobile cart moving at 140 cm/s in a 2D setup. These results show that, for the supermarket context, appropriate localization accuracy can be achieved, along with the real-time navigation support, using readily available IR technology with inexpensive hardware components.

6.
Data Brief ; 28: 104840, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31871986

ABSTRACT

Data presented in this article was created using a Croatian instrument called sopela - a traditional hand-made wooden aerophone of piercing sound, characteristic to the Istrian peninsula in western Croatia. The instrument is always played in pair (plural form: sopele), which consists of two voices: a small sopela and a great sopela. The data contains Waveform Audio File format (WAV) files, capturing every possible distinct tone of both sopele, as well as their polyphonic combinations. Additional data encompassed in the provided dataset are music scales and real music pieces, which contain specific traditional melodies. Every melody has a corresponding music sheet, presented in a Portable Document Format (PDF) file, which describes it in a human-readable manner. The specific Istrian scale music notation was applied while creating the music sheets. The data presented here was successfully utilised for developing, training and testing an automatic music transcription (AMT) solution, capable of converting sopele audio recordings into musical scores [1].

SELECTION OF CITATIONS
SEARCH DETAIL
...