Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 146(13): 134506, 2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28390372

ABSTRACT

We compute the x-ray emission spectrum of liquid methanol, with the dynamical effects that result from the creation of the core hole included in a semiclassical way. Our method closely reproduces a fully quantum mechanical description of the dynamical effects for relevant one-dimensional models of the hydrogen-bonded methanol molecules. For the liquid, we find excellent agreement with the experimental spectrum, including the large isotope effect in the first split peak. The dynamical effects depend sensitively on the initial structure in terms of the local hydrogen-bonding (H-bonding) character: non-donor molecules contribute mainly to the high-energy peak while molecules with a strong donating H-bond contribute to the peak at lower energy. The spectrum thus reflects the initial structure mediated by the dynamical effects that are, however, seen to be crucial in order to reproduce the intensity distribution of the recently measured spectrum.

2.
J Chem Phys ; 136(3): 034702, 2012 Jan 21.
Article in English | MEDLINE | ID: mdl-22280772

ABSTRACT

We report x-ray emission and absorption spectroscopy studies of the electronic structure of the predissociative α(3) phase of CO bound at hollow sites of Fe(100) as well as of the on-top bound species in the high-coverage α(1) phase. The analysis is supported by density functional calculations of structures and spectra. The bonding of "lying down" CO in the hollow site is well described in terms of π to π∗ charge transfer made possible through bonding interaction also at the oxygen in the minority spin-channel. The on-top CO in the mixed, high-coverage α(1) phase is found to be tilted due to adsorbate-adsorbate interaction, but still with bonding mainly characteristic of "vertical" on-top adsorbed CO similar to other transition-metal surfaces.


Subject(s)
Carbon Monoxide/chemistry , Iron/chemistry , Quantum Theory , Spectrometry, X-Ray Emission
3.
J Chem Phys ; 134(4): 044513, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21280754

ABSTRACT

We apply the Kramers-Heisenberg formula to a model water dimer to discuss vibrational interference in the x-ray emission spectrum of the donor molecule for which the core-ionized potential energy surface is dissociative but bounded by the accepting molecule. A long core-hole lifetime leads to decay from Zundel-like, fully delocalized vibrational states in the intermediate potential without involvement of a specific dissociated component. Comparison is made to a model with an unbound intermediate state allowing dissociation to infinity which gives a sharp, fully dissociated feature, and a broad molecular peak at long core-hole life time. The implications of the vibrational interference effect on the liquid water spectrum are discussed and it is proposed that this mainly gives rise to an isotope-dependent asymmetrical broadening of the lone pair peak.

4.
Proc Natl Acad Sci U S A ; 106(36): 15214-8, 2009 Sep 08.
Article in English | MEDLINE | ID: mdl-19706484

ABSTRACT

Small-angle X-ray scattering (SAXS) is used to demonstrate the presence of density fluctuations in ambient water on a physical length-scale of approximately 1 nm; this is retained with decreasing temperature while the magnitude is enhanced. In contrast, the magnitude of fluctuations in a normal liquid, such as CCl(4), exhibits no enhancement with decreasing temperature, as is also the case for water from molecular dynamics simulations under ambient conditions. Based on X-ray emission spectroscopy and X-ray Raman scattering data we propose that the density difference contrast in SAXS is due to fluctuations between tetrahedral-like and hydrogen-bond distorted structures related to, respectively, low and high density water. We combine our experimental observations to propose a model of water as a temperature-dependent, fluctuating equilibrium between the two types of local structures driven by incommensurate requirements for minimizing enthalpy (strong near-tetrahedral hydrogen-bonds) and maximizing entropy (nondirectional H-bonds and disorder). The present results provide experimental evidence that the extreme differences anticipated in the hydrogen-bonding environment in the deeply supercooled regime surprisingly remain in bulk water even at conditions ranging from ambient up to close to the boiling point.


Subject(s)
Molecular Conformation , Water/chemistry , Hydrogen Bonding , Models, Chemical , Spectrometry, X-Ray Emission , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...