Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Sci Bull (Beijing) ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38811339

ABSTRACT

Historical documents provide evidence for regional droughts preceding the political turmoil and fall of Beijing in 1644 CE, when more than 20 million people died in northern China during the late Ming famine period. However, the role climate and environmental changes may have played in this pivotal event in Chinese history remains unclear. Here, we provide tree-ring evidence of persistent megadroughts from 1576 to 1593 CE and from 1624 to 1643 CE in northern China, which coincided with exceptionally cold summers just before the fall of Beijing. Our analysis reveals that these regional hydroclimatic extremes are part of a series of megadroughts along the Pacific Rim, which not only impacted the ecology and society of monsoonal northern China, but likely also exacerbated external geopolitical and economic pressures. This finding is corroborated by last millennium reanalysis data and numerical climate model simulations revealing internally driven Pacific sea surface temperature variations and the predominance of decadal scale La Niña-like conditions to be responsible for precipitation decreases over northern China, as well as extensive monsoon regions in the Americas. These teleconnection patterns provide a mechanistic explanation for reoccurring drought spells during the late Ming Dynasty and the environmental framework fostering the fall of Beijing in 1644 CE, and the subsequent demise of the Ming Dynasty.

2.
Sci Rep ; 13(1): 10664, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37393322

ABSTRACT

Hydrological disasters, such as floods, can have dire consequences for human societies. Historical information plays a key role in detecting whether particular types of hydrological disasters have increased in frequency and/or magnitude and, if so, they are more likely attributable to natural or human-induced climatic and other environmental changes. The identification of regions with similar flood conditions is essential for the analysis of regional flooding regimes. To this end, we here present the longest existing flood reconstruction for the Eastern Liguria Area (ELA) in northwestern Italy, covering 1582 to 2022 CE, which offers a case study representative of the central Mediterranean region. An Annual Flood Intensification Index was developed to transform the historical data into a continuous annual hydrological time-series contained by a homogeneous data structure for the study-area. We found two change-points (trend breaks) in the reconstructed time-series, in 1787 and 1967, with only occasional heavy floods comparable to present-day disasters occurring before the first change-point, and an increasing intensification of floods after the second change-point up to the present day. The recent intensification of flooding in the ELA, associated with changes in land use and land cover, also appears to coincide with phases in which hydrological hazards have become more changeable and extreme in disaster-affected areas. This is evidenced by river basin responses to human-induced disturbances.


Subject(s)
Disasters , Implosive Therapy , Humans , Floods , Hydrology , Italy
4.
Front Plant Sci ; 13: 837648, 2022.
Article in English | MEDLINE | ID: mdl-35401628

ABSTRACT

Wood formation has received considerable attention across various research fields as a key process to model. Historical and contemporary models of wood formation from various disciplines have encapsulated hypotheses such as the influence of external (e.g., climatic) or internal (e.g., hormonal) factors on the successive stages of wood cell differentiation. This review covers 17 wood formation models from three different disciplines, the earliest from 1968 and the latest from 2020. The described processes, as well as their external and internal drivers and their level of complexity, are discussed. This work is the first systematic cataloging, characterization, and process-focused review of wood formation models. Remaining open questions concerning wood formation processes are identified, and relate to: (1) the extent of hormonal influence on the final tree ring structure; (2) the mechanism underlying the transition from earlywood to latewood in extratropical regions; and (3) the extent to which carbon plays a role as "active" driver or "passive" substrate for growth. We conclude by arguing that wood formation models remain to be fully exploited, with the potential to contribute to studies concerning individual tree carbon sequestration-storage dynamics and regional to global carbon sequestration dynamics in terrestrial vegetation models.

5.
Sci Rep ; 11(1): 20518, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654846

ABSTRACT

Rainfall erosivity drives damaging hydrological events with significant environmental and socio-economic impacts. This study presents the world's hitherto longest time-series of annual rainfall erosivity (725-2019 CE), one from the Tiber River Basin (TRB), a fluvial valley in central Italy in which the city of Rome is located. A historical perspective of erosive floods in the TRB is provided employing a rainfall erosivity model based on documentary data, calibrated against a sample (1923-1964) of actual measurement data. Estimates show a notable rainfall erosivity, and increasing variability, during the Little Ice Age (here, ~ 1250-1849), especially after c. 1495. During the sixteenth century, erosive forcing peaked at > 3500 MJ mm hm-2 h-1 yr-1 in 1590, with values > 2500 MJ mm hm-2 h-1 yr-1 in 1519 and 1566. Rainfall erosivity continued into the Current Warm Period (since ~ 1850), reaching a maximum of ~ 3000 MJ mm hm-2 h-1 yr-1 in the 1940s. More recently, erosive forcing has attenuated, though remains critically high (e.g., 2087 and 2008 MJ mm hm-2 h-1 yr-1 in 1992 and 2005, respectively). Comparison of the results with sediment production (1934-1973) confirms the model's ability to predict geomorphological effects in the TRB, and reflects the role of North Atlantic circulation dynamics in central Italian river basins.

6.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34282014

ABSTRACT

Asian summer monsoon (ASM) variability and its long-term ecological and societal impacts extending back to Neolithic times are poorly understood due to a lack of high-resolution climate proxy data. Here, we present a precisely dated and well-calibrated tree-ring stable isotope chronology from the Tibetan Plateau with 1- to 5-y resolution that reflects high- to low-frequency ASM variability from 4680 BCE to 2011 CE. Superimposed on a persistent drying trend since the mid-Holocene, a rapid decrease in moisture availability between ∼2000 and ∼1500 BCE caused a dry hydroclimatic regime from ∼1675 to ∼1185 BCE, with mean precipitation estimated at 42 ± 4% and 5 ± 2% lower than during the mid-Holocene and the instrumental period, respectively. This second-millennium-BCE megadrought marks the mid-to late Holocene transition, during which regional forests declined and enhanced aeolian activity affected northern Chinese ecosystems. We argue that this abrupt aridification starting ∼2000 BCE contributed to the shift of Neolithic cultures in northern China and likely triggered human migration and societal transformation.

7.
Malar J ; 20(1): 212, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33933085

ABSTRACT

BACKGROUND: Understanding of the impacts of climatic variability on human health remains poor despite a possibly increasing burden of vector-borne diseases under global warming. Numerous socioeconomic variables make such studies challenging during the modern period while studies of climate-disease relationships in historical times are constrained by a lack of long datasets. Previous studies have identified the occurrence of malaria vectors, and their dependence on climate variables, during historical times in northern Europe. Yet, malaria in Sweden in relation to climate variables is understudied and relationships have never been rigorously statistically established. This study seeks to examine the relationship between malaria and climate fluctuations, and to characterise the spatio-temporal variations at parish level during severe malaria years in Sweden 1749-1859. METHODS: Symptom-based annual malaria case/death data were obtained from nationwide parish records and military hospital records in Stockholm. Pearson (rp) and Spearman's rank (rs) correlation analyses were conducted to evaluate inter-annual relationship between malaria data and long meteorological series. The climate response to larger malaria events was further explored by Superposed Epoch Analysis, and through Geographic Information Systems analysis to map spatial variations of malaria deaths. RESULTS: The number of malaria deaths showed the most significant positive relationship with warm-season temperature of the preceding year. The strongest correlation was found between malaria deaths and the mean temperature of the preceding June-August (rs = 0.57, p < 0.01) during the 1756-1820 period. Only non-linear patterns can be found in response to precipitation variations. Most malaria hot-spots, during severe malaria years, concentrated in areas around big inland lakes and southern-most Sweden. CONCLUSIONS: Unusually warm and/or dry summers appear to have contributed to malaria epidemics due to both indoor winter transmission and the evidenced long incubation and relapse time of P. vivax, but the results also highlight the difficulties in modelling climate-malaria associations. The inter-annual spatial variation of malaria hot-spots further shows that malaria outbreaks were more pronounced in the southern-most region of Sweden in the first half of the nineteenth century compared to the second half of the eighteenth century.


Subject(s)
Disease Outbreaks/history , Malaria, Vivax/history , Climate , History, 17th Century , History, 18th Century , Humans , Malaria, Vivax/epidemiology , Malaria, Vivax/transmission , Seasons , Sweden/epidemiology
8.
Sci Rep ; 10(1): 22062, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33328541

ABSTRACT

Rainfall erosivity and its derivative, erosivity density (ED, i.e., the erosivity per unit of rain), is a main driver of considerable environmental damages and economic losses worldwide. This study is the first to investigate the interannual variability, and return periods, of both rainfall erosivity and ED over the Mediterranean for the period 1680-2019. By capturing the relationship between seasonal rainfall, its variability, and recorded hydrological extremes in documentary data consistent with a sample (1981-2015) of detailed Revised Universal Soil Loss Erosion-based data, we show a noticeable decreasing trend of rainfall erosivity since about 1838. However, the 30-year return period of ED values indicates a positive long-term trend, in tandem with the resurgence of very wet days (> 95th percentile) and the erosive activity of rains during the past two decades. A possible fingerprint of recent warming is the occurrence of prolonged wet spells in apparently more erratic and unexpected ways.

9.
Sci Rep ; 10(1): 16284, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004966

ABSTRACT

Hydroclimate, the interplay of moisture supply and evaporative demand, is essential for ecological and agricultural systems. The understanding of long-term hydroclimate changes is, however, limited because instrumental measurements are inadequate in length to capture the full range of precipitation and temperature variability and by the uneven distribution of high-resolution proxy records in space and time. Here, we present a tree-ring-based reconstruction of interannual to centennial-scale groundwater level (GWL) fluctuations for south-western Germany and north-eastern France. Continuously covering the period of 265-2017 CE, our new record from the Upper Rhine Valley shows that the warm periods during late Roman, medieval and recent times were characterized by higher GWLs. Lower GWLs were found during the cold periods of the Late Antique Little Ice Age (LALIA; 536 to ~ 660 CE) and the Little Ice Age (LIA; between medieval and recent warming). The reconstructed GWL fluctuations are in agreement with multidecadal North Atlantic climate variability derived from independent proxies. Warm and wet hydroclimate conditions are found during warm states of the Atlantic Ocean and positive phases of the North Atlantic Oscillation on decadal scales.

10.
Clim Dyn ; 55(3): 579-594, 2020.
Article in English | MEDLINE | ID: mdl-32713995

ABSTRACT

High-resolution hydroclimate proxy records are essential for distinguishing natural hydroclimate variability from possible anthropogenically-forced changes, since instrumental precipitation observations are too short to represent the whole spectrum of natural variability. In Northern Europe, progress in this field has been hampered by a relative lack of long and truly moisture-sensitive proxy records. In this study, we provide the first assessment of the dendroclimatic potential of Blue Intensity (BI) and partial ring-width measurements (latewood and earlywood width series) from a network of cold and drought-prone Pinus sylvestris L. sites in Sweden. Our results show that all tree-ring parameters and sites share a clear and strong sensitivity to warm-season precipitation. The ΔBI parameter, in particular, shows considerable potential for hydroclimate reconstructions, here permitting a cross-validated precipitation reconstruction capable of explaining 56% (1901-2010 period) of regional-scale warm-season high-frequency precipitation variance. Using ΔBI as an alternative to ring-width improves the predictive skill with nearly a 20 percentage points increase in explained variance, reduces signal instability over time as well as allows a broader seasonal window (May-July) to be reconstructed. Additionally, we found that earlywood BI also reflect a positive late winter through early summer temperature signal. These findings emphasize that tree-rings, and in particular wood density parameters such as from BI, are capable of providing fundamental information to advance our understanding of hydroclimate variability in regions with a cool and rather humid climate regime that traditionally has been overlooked in studies of past droughts. Increasing the spatio-temporal coverage of hydroclimate records in northern Europe, and taking full advantage of the opportunities offered by the wood densitometric properties should be considered a research priority.

11.
Sci Rep ; 10(1): 9982, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32546705

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Nat Commun ; 11(1): 716, 2020 02 05.
Article in English | MEDLINE | ID: mdl-32024832

ABSTRACT

Many Holocene hydroclimate records show rainfall changes that vary with local orbital insolation. However, some tropical regions display rainfall evolution that differs from gradual precessional pacing, suggesting that direct rainfall forcing effects were predominantly driven by sea-surface temperature thresholds or inter-ocean temperature gradients. Here we present a 12,000 yr continuous U/Th-dated precipitation record from a Guatemalan speleothem showing that Central American rainfall increased within a 2000 yr period from a persistently dry state to an active convective regime at 9000 yr BP and has remained strong thereafter. Our data suggest that the Holocene evolution of Central American rainfall was driven by exceeding a temperature threshold in the nearby tropical oceans. The sensitivity of this region to slow changes in radiative forcing is thus strongly mediated by internal dynamics acting on much faster time scales.

13.
Front Plant Sci ; 10: 1191, 2019.
Article in English | MEDLINE | ID: mdl-31611900

ABSTRACT

Identifying which trees are more vulnerable to extreme climatic events is a challenging problem in our understanding of forest and even ecosystem dynamics under climate change scenarios. As one of the most widely distributed tree species across the arid and semi-arid northeastern Tibetan Plateau, Qilian juniper (Juniperus przewalskii Kom.), is the main component of the local forest ecosystem, providing critical insurance for the ecological security of the surrounding areas. However, this species's ability to cope with climate extremes (especially drought) has not been adequately assessed. Here, we apply a dendroecological approach that considers indices of resistance and resilience to quantify the vulnerability of Qilian junipers to the extreme drought events of 1957, 1966, 1979, and 1995. A total of 532 Qilian juniper trees from different age stages (100-1,100 years) and altitudes [3,500-4,000 m above sea level (a.s.l.)] were studied to assess their response characteristics during these four drought extremes. We conclude that drought extremes have a significant negative impact on the growth of Qilian juniper. The oldest Qilian junipers at the lower altitudes constituted the most vulnerable populations across the northeastern Tibetan Plateau and were characterized by the lowest resistance values, the narrowest annual rings, and the highest proportion of missing rings during the four drought years. Tree resilience after droughts was strongly related to the intensity of the drought event and did not change with tree age or elevation. A threshold of tree tolerance to drought may exist, with the more vulnerable tree individuals (e.g., the oldest Qilian junipers from lower altitudes) being exposed to the highest mortality risk when drought intensity exceeds the threshold value. Such a threshold needs further consideration, through the study of trees that have died (or are about to die) due to extreme droughts.

14.
Nat Geosci ; 12(8): 643-649, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31372180

ABSTRACT

Multi-decadal surface temperature changes may be forced by natural as well as anthropogenic factors, or arise unforced from the climate system. Distinguishing these factors is essential for estimating sensitivity to multiple climatic forcings and the amplitude of the unforced variability. Here we present 2,000-year-long global mean temperature reconstructions using seven different statistical methods that draw from a global collection of temperature-sensitive paleoclimate records. Our reconstructions display synchronous multi-decadal temperature fluctuations, which are coherent with one another and with fully forced CMIP5 millennial model simulations across the Common Era. The most significant attribution of pre-industrial (1300-1800 CE) variability at multi-decadal timescales is to volcanic aerosol forcing. Reconstructions and simulations qualitatively agree on the amplitude of the unforced global mean multi-decadal temperature variability, thereby increasing confidence in future projections of climate change on these timescales. The largest warming trends at timescales of 20 years and longer occur during the second half of the 20th century, highlighting the unusual character of the warming in recent decades.

15.
Sci Rep ; 9(1): 9963, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31292466

ABSTRACT

Damaging hydrological events are extreme phenomena with potentially severe impacts on human societies. Here, we present the hitherto longest reconstruction of damaging hydrological events for Italy, and for the whole Mediterranean region, revealing 674 such events over the period 800-2017. For any given year, we established a severity index based on information in historical documentary records, facilitating the transformation of the data into a continuous time-series. Episodes of hydrological extremes disrupted ecosystems during the more severe events by changing landforms. The frequency and severity of damaging hydrological events across Italy were likely influenced by the mode of the Atlantic Multidecadal Variability (AMV), with relatively few events during the warm Medieval Climate Anomaly dominated by a positive phase of the AMV. More frequent and heavier storms prevailed during the cold Little Ice Age, dominated by a more negative phase of the AMV. Since the mid-19th century, a decreasing occurrence of exceptional hydrological events is evident, especially during the most recent decades, but this decrease is not yet unprecedented in the context of the past twelve centuries.

16.
Nat Commun ; 9(1): 5399, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30559446

ABSTRACT

The original version of this Article contained an error in the Data Availability section, which incorrectly read 'All data will be freely available via https://www.ams.ethz.ch/research.html .' The correct version states ' http://www.ams.ethz.ch/research/published-data.html ' in place of ' https://www.ams.ethz.ch/research.html '. This has been corrected in both the PDF and HTML versions of the Article.

17.
Nat Commun ; 9(1): 3605, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30190505

ABSTRACT

Though tree-ring chronologies are annually resolved, their dating has never been independently validated at the global scale. Moreover, it is unknown if atmospheric radiocarbon enrichment events of cosmogenic origin leave spatiotemporally consistent fingerprints. Here we measure the 14C content in 484 individual tree rings formed in the periods 770-780 and 990-1000 CE. Distinct 14C excursions starting in the boreal summer of 774 and the boreal spring of 993 ensure the precise dating of 44 tree-ring records from five continents. We also identify a meridional decline of 11-year mean atmospheric radiocarbon concentrations across both hemispheres. Corroborated by historical eye-witness accounts of red auroras, our results suggest a global exposure to strong solar proton radiation. To improve understanding of the return frequency and intensity of past cosmic events, which is particularly important for assessing the potential threat of space weather on our society, further annually resolved 14C measurements are needed.

18.
Sci Rep ; 8(1): 7702, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29769593

ABSTRACT

East Asia has experienced strong warming since the 1960s accompanied by an increased frequency of heat waves and shrinking glaciers over the Tibetan Plateau and the Tien Shan. Here, we place the recent warmth in a long-term perspective by presenting a new spatially resolved warm-season (May-September) temperature reconstruction for the period 1-2000 CE using 59 multiproxy records from a wide range of East Asian regions. Our Bayesian Hierarchical Model (BHM) based reconstructions generally agree with earlier shorter regional temperature reconstructions but are more stable due to additional temperature sensitive proxies. We find a rather warm period during the first two centuries CE, followed by a multi-century long cooling period and again a warm interval covering the 900-1200 CE period (Medieval Climate Anomaly, MCA). The interval from 1450 to 1850 CE (Little Ice Age, LIA) was characterized by cooler conditions and the last 150 years are characterized by a continuous warming until recent times. Our results also suggest that the 1990s were likely the warmest decade in at least 1200 years. The comparison between an ensemble of climate model simulations and our summer reconstructions since 850 CE shows good agreement and an important role of internal variability and external forcing on multi-decadal time-scales.

19.
Int J Biometeorol ; 62(4): 631-641, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29150764

ABSTRACT

The response of the growing season to the ongoing global warming has gained considerable attention. In particular, how and to which extent the growing season will change during this century is essential information for the Tibetan Plateau, where the observed warming trend has exceeded the global mean. In this study, the 1960-2014 mean length of the tree-ring growing season (LOS) on the Tibetan Plateau was derived from results of the Vaganov-Shashkin oscilloscope tree growth model, based on 20 composite study sites and more than 3000 trees. Bootstrap and partial correlations were used to evaluate the most significant climate factors determining the LOS in the study region. Based on this relationship, we predicted the future variability of the LOS under three emission scenarios (Representative Concentration Pathways (RCP) 2.6, 6.0, and 8.5, representing different concentrations of greenhouse gasses) derived from 17 Earth system models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). The averaged LOS on the Tibetan Plateau is 103 days during the period 1960-2014, and April-September minimum temperature is the strongest factor controlling the LOS. We detected a general increase in the LOS over the twenty-first century under all the three selected scenarios. By the middle of this century, LOS will extend by about 3 to 4 weeks under the RCPs 2.6 and 6.0, and by more than 1 month (37 days) under the RCP 8.5, relative to the baseline period 1960-2014. From the middle to the end of the twenty-first century, LOS will further extend by about 3 to 4 weeks under the RCPs 6.0 and 8.5, respectively. Under the RCP 2.6 scenario, however, the extension reaches a plateau at around 2050 and about 2 weeks LOS extension. In total, we found an average rate of 2.1, 3.6, and 5.0 days decade-1 for the LOS extension from 2015 to 2100 under the RCPs 2.6, 6.0, and 8.5, respectively. However, such estimated LOS extensions may be offset by other ecological factors that were not included into the growth model. The estimated lengthening of the growing season could substantially affect carbon sequestration and forest productivity on the Tibetan Plateau.


Subject(s)
Models, Theoretical , Seasons , Trees/growth & development , Computer Simulation , Rain , Snow , Temperature , Tibet
20.
Proc Natl Acad Sci U S A ; 114(27): 6966-6971, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28630302

ABSTRACT

Phenological responses of vegetation to climate, in particular to the ongoing warming trend, have received much attention. However, divergent results from the analyses of remote sensing data have been obtained for the Tibetan Plateau (TP), the world's largest high-elevation region. This study provides a perspective on vegetation phenology shifts during 1960-2014, gained using an innovative approach based on a well-validated, process-based, tree-ring growth model that is independent of temporal changes in technical properties and image quality of remote sensing products. Twenty composite site chronologies were analyzed, comprising about 3,000 trees from forested areas across the TP. We found that the start of the growing season (SOS) has advanced, on average, by 0.28 d/y over the period 1960-2014. The end of the growing season (EOS) has been delayed, by an estimated 0.33 d/y during 1982-2014. No significant changes in SOS or EOS were observed during 1960-1981. April-June and August-September minimum temperatures are the main climatic drivers for SOS and EOS, respectively. An increase of 1 °C in April-June minimum temperature shifted the dates of xylem phenology by 6 to 7 d, lengthening the period of tree-ring formation. This study extends the chronology of TP phenology farther back in time and reconciles the disparate views on SOS derived from remote sensing data. Scaling up this analysis may improve understanding of climate change effects and related phenological and plant productivity on a global scale.


Subject(s)
Climate Change , Environmental Monitoring/methods , Trees/growth & development , Tibet
SELECTION OF CITATIONS
SEARCH DETAIL
...