Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731971

ABSTRACT

Tendinopathy, characterized by inflammatory and degenerative changes, presents challenges in sports and medicine. In addressing the limitations of conservative management, this study focuses on developing tendon grafts using extrusion bioprinting with platelet-rich plasma (PRP)-infused hydrogels loaded with tendon cells. The objective is to understand paracrine interactions initiated by bioprinted tendon grafts in either inflamed or non-inflamed host tissues. PRP was utilized to functionalize methacrylate gelatin (GelMA), incorporating tendon cells for graft bioprinting. Bioinformatic analyses of overexpressed proteins, predictive of functional enrichment, revealed insights into PRP graft behavior in both non-inflamed and inflamed environments. PRP grafts activated inflammatory pathways, including Interleukin 17 (IL-17), neuroinflammation, Interleukin 33 (IL-33), and chemokine signaling. Interleukin 1 beta (IL-1b) in the graft environment triggered p38 mitogen-activated protein kinase (MAPK) signaling, nuclear factor kappa light chain enhancer of activated B cells (NF-kB) canonical pathway, and Vascular Endothelial Growth Factor (VEGF) signaling. Biological enrichment attributed to PRP grafts included cell chemotaxis, collagen turnover, cell migration, and angiogenesis. Acellular PRP grafts differed from nude grafts in promoting vessel length, vessel area, and junction density. Angiogenesis in cellular grafts was enhanced with newly synthesized Interleukin 8 (IL-8) in cooperation with IL-1b. In conclusion, paracrine signaling from PRP grafts, mediated by chemokine activities, influences cell migration, inflammation, and angiogenic status in host tissues. Under inflammatory conditions, newly synthesized IL-8 regulates vascularization in collaboration with PRP.


Subject(s)
Bioprinting , Platelet-Rich Plasma , Tendons , Tendons/metabolism , Bioprinting/methods , Animals , Platelet-Rich Plasma/metabolism , Humans , Tissue Engineering/methods , Hydrogels/chemistry , Tissue Scaffolds/chemistry , Tendinopathy/metabolism , Tendinopathy/therapy , Tendinopathy/pathology
2.
J Vis Exp ; (196)2023 06 23.
Article in English | MEDLINE | ID: mdl-37427919

ABSTRACT

Mitochondria play a central role in the energy metabolism of cells, and their function is especially important for neurons due to their high energy demand. Therefore, mitochondrial dysfunction is a pathological hallmark of various neurological disorders, including Parkinson's disease. The shape and organization of the mitochondrial network is highly plastic, which allows the cell to respond to environmental cues and needs, and the structure of mitochondria is also tightly linked to their health. Here, we present a protocol to study mitochondrial morphology in situ based on immunostaining of the mitochondrial protein VDAC1 and subsequent image analysis. This tool could be particularly useful for the study of neurodegenerative disorders because it can detect subtle differences in mitochondrial counts and shape induced by aggregates of α-synuclein, an aggregation-prone protein heavily involved in the pathology of Parkinson's disease. This method allows one to report that substantia nigra pars compacta dopaminergic neurons harboring pS129 lesions show mitochondrial fragmentation (as suggested by their reduced Aspect Ratio, AR) compared to their healthy neighboring neurons in a pre-formed fibril intracranial injection Parkinson model.


Subject(s)
Mitochondria , Parkinson Disease , Animals , Female , Male , Mice , Disease Models, Animal , Mitochondria/pathology , Parkinson Disease/pathology , Mice, Inbred C57BL , Cell Line
SELECTION OF CITATIONS
SEARCH DETAIL
...