Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 42(12): e111272, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37143403

ABSTRACT

Patients with chronic obstructive pulmonary disease (COPD) are still waiting for curative treatments. Considering its environmental cause, we hypothesized that COPD will be associated with altered epigenetic signaling in lung cells. We generated genome-wide DNA methylation maps at single CpG resolution of primary human lung fibroblasts (HLFs) across COPD stages. We show that the epigenetic landscape is changed early in COPD, with DNA methylation changes occurring predominantly in regulatory regions. RNA sequencing of matched fibroblasts demonstrated dysregulation of genes involved in proliferation, DNA repair, and extracellular matrix organization. Data integration identified 110 candidate regulators of disease phenotypes that were linked to fibroblast repair processes using phenotypic screens. Our study provides high-resolution multi-omic maps of HLFs across COPD stages. We reveal novel transcriptomic and epigenetic signatures associated with COPD onset and progression and identify new candidate regulators involved in the pathogenesis of chronic lung diseases. The presence of various epigenetic factors among the candidates demonstrates that epigenetic regulation in COPD is an exciting research field that holds promise for novel therapeutic avenues for patients.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Transcriptome , Humans , Epigenesis, Genetic , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Lung/pathology , Gene Expression Profiling , DNA Methylation
3.
Nat Cancer ; 3(4): 471-485, 2022 04.
Article in English | MEDLINE | ID: mdl-35484422

ABSTRACT

Aberrant expression of MYC transcription factor family members predicts poor clinical outcome in many human cancers. Oncogenic MYC profoundly alters metabolism and mediates an antioxidant response to maintain redox balance. Here we show that MYCN induces massive lipid peroxidation on depletion of cysteine, the rate-limiting amino acid for glutathione (GSH) biosynthesis, and sensitizes cells to ferroptosis, an oxidative, non-apoptotic and iron-dependent type of cell death. The high cysteine demand of MYCN-amplified childhood neuroblastoma is met by uptake and transsulfuration. When uptake is limited, cysteine usage for protein synthesis is maintained at the expense of GSH triggering ferroptosis and potentially contributing to spontaneous tumor regression in low-risk neuroblastomas. Pharmacological inhibition of both cystine uptake and transsulfuration combined with GPX4 inactivation resulted in tumor remission in an orthotopic MYCN-amplified neuroblastoma model. These findings provide a proof of concept of combining multiple ferroptosis targets as a promising therapeutic strategy for aggressive MYCN-amplified tumors.


Subject(s)
Ferroptosis , Neuroblastoma , Cell Death , Child , Cysteine/therapeutic use , Ferroptosis/genetics , Glutathione/therapeutic use , Humans , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics
4.
J Invest Dermatol ; 142(3 Pt B): 915-923.e3, 2022 03.
Article in English | MEDLINE | ID: mdl-34265330

ABSTRACT

Pemphigus is a potentially lethal autoimmune bullous skin disorder, which is associated with IgG autoantibodies against desmoglein (DSG) 3 and DSG1. Notably, a subset of patients with pemphigus presents with a similar clinical phenotype in the absence of anti-DSG IgG, suggesting the presence of serum IgG reactive with desmosomal components other than DSG1 or DSG3. We and others have previously shown that such patients have serum IgG autoantibodies against desmocollin 3 (DSC3), a component of desmosomes, which induce loss of keratinocyte adhesion ex vivo. Moreover, DSC3 hypomorphic mice show a severe blistering phenotype of the mucous membrane, which is highly characteristic of pemphigus. These findings prompted us to study the induction and regulation of anti-human DSC3 IgG in humanized mice transgenic for HLA-DRB1∗04:02, which is a highly prevalent haplotype in pemphigus. We show that IgG from sera of immunized mice induces acantholysis in a dispase-based keratinocyte dissociation assay through the activation of p38 MAPKs and EGFR. Passive IgG transfer from mice immunized with recombinant human DSC3 into neonates did not induce intraepidermal loss of adhesion presumably owing to the lack of homology between human and mouse DSC3. Ex vivo stimulation of splenocytes from DSC3-immunized mice with human DSC3 leads to a significant proliferative IFN-γ and IL-4 T-cell response, which is restricted by HLA-DR/HLA-DQ. These findings suggest that the induction of pathogenic anti-DSC3 IgG is associated with DSC3-specific T cells that recognize DSC3 in association with HLA-DRB1∗04:02.


Subject(s)
Pemphigus , Animals , Autoantibodies , Desmocollins , Desmoglein 1 , Desmoglein 3/genetics , Disease Models, Animal , HLA-DRB1 Chains/genetics , Humans , Immunoglobulin G , Mice , Mice, Transgenic
5.
JCI Insight ; 6(6)2021 03 22.
Article in English | MEDLINE | ID: mdl-33630765

ABSTRACT

Complexity of lung microenvironment and changes in cellular composition during disease make it exceptionally hard to understand molecular mechanisms driving development of chronic lung diseases. Although recent advances in cell type-resolved approaches hold great promise for studying complex diseases, their implementation relies on local access to fresh tissue, as traditional tissue storage methods do not allow viable cell isolation. To overcome these hurdles, we developed a versatile workflow that allows storage of lung tissue with high viability, permits thorough sample quality check before cell isolation, and befits sequencing-based profiling. We demonstrate that cryopreservation enables isolation of multiple cell types from both healthy and diseased lungs. Basal cells from cryopreserved airways retain their differentiation ability, indicating that cellular identity is not altered by cryopreservation. Importantly, using RNA sequencing and EPIC Array, we show that gene expression and DNA methylation signatures are preserved upon cryopreservation, emphasizing the suitability of our workflow for omics profiling of lung cells. Moreover, we obtained high-quality single-cell RNA-sequencing data of cells from cryopreserved human lungs, demonstrating that cryopreservation empowers single-cell approaches. Overall, thanks to its simplicity, our workflow is well suited for prospective tissue collection by academic collaborators and biobanks, opening worldwide access to viable human tissue.


Subject(s)
Cryopreservation , Epigenesis, Genetic , Lung/metabolism , Transcription, Genetic , DNA Methylation , Gene Expression , Humans , Lung/cytology , Sequence Analysis, RNA/methods , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...