Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 16(1): 837-846, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34918916

ABSTRACT

Nanowires are often key ingredients of high-tech composite materials. The properties and performance of devices created using these, depend heavily on the structure and density of the embedded nanowires. Despite significant efforts, a process that can be adapted to different materials, compatible with current nanowire deposition methods, and that is able to control both variables simultaneously has not been achieved yet. In this work, we show that we can use low magnetic fields (80 mT) to manipulate nanowires by electrostatically coating them with superparamagnetic iron oxide nanoparticles in an aqueous solution. Monolayers, multilayers, and hierarchical structures of oriented nanowires were achieved in a highly ordered manner using vacuum filtration for two types of nanowires: silver and gold-coated titanium dioxide nanowires. The produced films were embedded in an elastomer, and the strain-dependent electrical properties of the resulting composites were investigated. The orientation of the assembly with respect to the tensile strain heavily impacts the performance of the composites. Composites containing nanowires perpendicular to the strain direction exhibit an extremely low gauge factor. On the other hand, when nanowires are arranged parallel to the strain direction, the composites have a high gauge factor. The possibility to orient nanowires during the processing steps is not only interesting for the shown strain sensing application but also expected to be useful in many other areas of material science.

2.
Adv Healthc Mater ; 10(3): e2001397, 2021 02.
Article in English | MEDLINE | ID: mdl-33205564

ABSTRACT

Research on the field of implantable electronic devices that can be directly applied in the body with various functionalities is increasingly intensifying due to its great potential for various therapeutic applications. While conventional implantable electronics generally include rigid and hard conductive materials, their surrounding biological objects are soft and dynamic. The mechanical mismatch between implanted devices and biological environments induces damages in the body especially for long-term applications. Stretchable electronics with outstanding mechanical compliance with biological objects effectively improve such limitations of existing rigid implantable electronics. In this article, the recent progress of implantable soft electronics based on various conductive nanocomposites is systematically described. In particular, representative fabrication approaches of conductive and stretchable nanocomposites for implantable soft electronics and various in vivo applications of implantable soft electronics are focused on. To conclude, challenges and perspectives of current implantable soft electronics that should be considered for further advances are discussed.


Subject(s)
Nanocomposites , Wearable Electronic Devices , Electric Conductivity , Electronics , Prostheses and Implants
3.
Adv Healthc Mater ; 9(19): e2000855, 2020 10.
Article in English | MEDLINE | ID: mdl-32893478

ABSTRACT

Cardiothoracic open-heart surgery has revolutionized the treatment of cardiovascular disease, the leading cause of death worldwide. After the surgery, hemodynamic and volume management can be complicated, for example in case of vasoplegia after endocarditis. Timely treatment is crucial for outcomes. Currently, treatment decisions are made based on heart volume, which needs to be measured manually by the clinician each time using ultrasound. Alternatively, implantable sensors offer a real-time window into the dynamic function of our body. Here it is shown that a soft flexible sensor, made with biocompatible materials, implanted on the surface of the heart, can provide continuous information of the heart volume after surgery. The sensor works robustly for a period of two days on a tensile machine. The accuracy of measuring heart volume is improved compared to the clinical gold standard in vivo, with an error of 7.1 mL for the strain sensor versus impedance and 14.0 mL versus ultrasound. Implanting such a sensor would provide essential, continuous information on heart volume in the critical time following the surgery, allowing early identification of complications, facilitating treatment, and hence potentially improving patient outcome.


Subject(s)
Cardiac Volume , Prostheses and Implants , Biocompatible Materials , Humans , Monitoring, Physiologic
4.
Adv Mater ; 32(5): e1902532, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31495991

ABSTRACT

Research on wearable electronic devices that can be directly integrated into daily textiles or clothes has been explosively grown holding great potential for various practical wearable applications. These wearable electronic devices strongly demand 1D electronic devices that are light-weight, weavable, highly flexible, stretchable, and adaptable to comport to frequent deformations during usage in daily life. To this end, the development of 1D electrodes with high stretchability and electrical performance is fundamentally essential. Herein, the recent process of 1D stretchable electrodes for wearable and textile electronics is described, focusing on representative conductive materials, fabrication techniques for 1D stretchable electrodes with high performance, and designs and applications of various 1D stretchable electronic devices. To conclude, discussions are presented regarding limitations and perspectives of current materials and devices in terms of performance and scientific understanding that should be considered for further advances.


Subject(s)
Electronics/instrumentation , Textiles , Wearable Electronic Devices , Carbon/chemistry , Electric Conductivity , Electrical Equipment and Supplies , Electrodes , Metals/chemistry , Nanostructures/chemistry , Nanotechnology , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...