Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Langmuir ; 39(50): 18476-18485, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38048267

ABSTRACT

Medical devices are crucial for patient care, yet even the best biomaterials lead to infections and unwanted activation of blood coagulation, potentially being life-threatening. While hydrophilic polymer brushes are the best coatings to mitigate these issues, their reliance on fossil raw materials underscores the urgency of bio-based alternatives. In this work, we introduce polymer brushes of a green solvent-based monomer, prohibiting protein adsorption, bacterial colonization, and blood clot formation at the same level as fossil-based polymer brushes. The polymer brushes are composed of N,N-dimethyl lactamide acrylate (DMLA), can be polymerized in a controlled manner, and show strong hydrophilicity as determined by thermodynamic analysis of the surface tension components. The contact of various challenging protein solutions results in repellency on the poly(DMLA) brushes. Furthermore, the poly(DMLA) brushes completely prevent the adhesion and colonization of Escherichia coli. Remarkably, upon blood contact, the poly(DMLA) brushes successfully prevent the formation of a fibrin network and leukocyte adhesion on the surface. While showcasing excellent antifouling properties similar to those of N-hydroxypropyl methacrylamide (HPMA) polymer brushes as one of the best antifouling coatings, the absence of hydroxyl groups prevents activation of the complement system in blood. We envision the polymer brushes to contribute to the future of hemocompatible coatings.


Subject(s)
Biofouling , Polymers , Humans , Polymers/pharmacology , Solvents , Biofouling/prevention & control , Biocompatible Materials/pharmacology , Proteins , Surface Properties
3.
ACS Sustain Chem Eng ; 11(27): 9979-9988, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37448723

ABSTRACT

This work demonstrates for the first-time biobased, temperature-responsive diblock copolymer nanoparticles synthesized by reversible addition-fragmentation chain-transfer (RAFT) aqueous emulsion polymerization-induced self-assembly (PISA). Here, monomers derived from green solvents of the lactic acid portfolio, N,N-dimethyl lactamide acrylate (DMLA) and ethyl lactate acrylate (ELA), were used. First, DMLA was polymerized by RAFT aqueous solution polymerization to produce a hydrophilic PDMLA macromolecular chain transfer agent (macro-CTA), which was chain extended with ELA in water to form amphiphilic PDMLA-b-PELA diblock copolymer nanoparticles by RAFT aqueous emulsion polymerization. PDMLAx homopolymers were synthesized targeting degrees of polymerization, DPx from 25 to 400, with relatively narrow molecular weight dispersities (D < 1.30). The PDMLA64-b-PELAy diblock copolymers (DPy = 10-400) achieved dispersities, D, between 1.18 and 1.54 with two distinct glass transition temperatures (Tg) identified by differential scanning calorimetry (DSC). Tg(1) (7.4 to 15.7 °C) representative of PELA and Tg(2) (69.1 to 79.7 °C) of PDMLA. Dynamic light scattering (DLS) studies gave particle z-average diameters between 11 and 74 nm (PDI = 0.04 to 0.20). Atomic force microscopy (AFM) showed evidence of spherical particles when dispersions were dried at ∼5 °C and film formation when dried at room temperature. Many of these polymers exhibited a reversible lower critical solution temperature (LCST) in water with a concomitant increase in z-average diameter for the PDMLA-b-PELA diblock copolymer nanoparticles.

4.
Polymers (Basel) ; 15(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36904317

ABSTRACT

In 2022, the Nobel Prize in Chemistry was awarded to Bertozzi, Meldal, and Sharpless "for the development of click chemistry and biorthogonal chemistry". Since 2001, when the concept of click chemistry was advanced by Sharpless laboratory, synthetic chemists started to envision click reactions as the preferred choice of synthetic methodology employed to create new functions. This brief perspective will summarize research performed in our laboratories with the classic Cu(I)-catalyzed azide-alkyne click (CuAAC) reaction elaborated by Meldal and Sharpless, with the thio-bromo click (TBC) and with the less-used, irreversible TERminator Multifunctional INItiator (TERMINI) dual click (TBC) reactions, the last two elaborated in our laboratory. These click reactions will be used to assemble, by accelerated modular-orthogonal methodologies, complex macromolecules and self-organizations of biological relevance. Self-assembling amphiphilic Janus dendrimers and Janus glycodendrimers together with their biological membrane mimics known as dendrimersomes and glycodendrimersomes as well as simple methodologies to assemble macromolecules with perfect and complex architecture such as dendrimers from commercial monomers and building blocks will be discussed. This perspective is dedicated to the 75th anniversary of Professor Bogdan C. Simionescu, the son of my (VP) Ph.D. mentor, Professor Cristofor I. Simionescu, who as his father, took both science and science administration in his hands, and dedicated his life to handling them in a tandem way, to their best.

5.
Small ; 19(7): e2205672, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36478382

ABSTRACT

The design of stimuli-responsive lignin nanoparticles (LNPs) for advanced applications has hitherto been limited to the preparation of lignin-grafted polymers in which usually the lignin content is low (<25 wt.%) and its role is debatable. Here, the preparation of O2 -responsive LNPs exceeding 75 wt.% in lignin content is shown. Softwood Kraft lignin (SKL) is coprecipitated with a modified SKL fluorinated oleic acid ester (SKL-OlF) to form colloidal stable hybrid LNPs (hy-LNPs). The hy-LNPs with a SKL-OlF content ranging from 10 to 50 wt.% demonstrated a reversible swelling behavior upon O2 /N2 bubbling, increasing their size - ≈35% by volume - and changing their morphology from spherical to core-shell. Exposition of hy-LNPs to O2 bubbling promotes a polarity change on lignin-fluorinated oleic chains, and consequently their migration from the inner part to the surface of the particle, which not only increases the particle size but also endows hy-LNPs with enhanced stability under harsh conditions (pH < 2.5) by the hydration barrier effect. Furthermore, it is also demonstrated that these new stimuli-responsive particles as gas tunable nanoreactors for the synthesis of gold nanoparticles. Combining a straightforward preparation with their enhanced stability and responsiveness to O2 gas these new LNPs pave the way for the next generation of smart lignin-based nanomaterials.

6.
Molecules ; 25(23)2020 Dec 05.
Article in English | MEDLINE | ID: mdl-33291362

ABSTRACT

Lactic acid is one of the key biobased chemical building blocks, given its readily availability from sugars through fermentation and facile conversion into a range of important chemical intermediates and polymers. Herein, well-defined rubbery polymers derived from butyl lactate solvent were successfully prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization of the corresponding monomeric acrylic derivative. Good control over molecular weight and molecular weight distribution was achieved in bulk using either monofunctional or bifunctional trithiocarbonate-type chain transfer agents. Subsequently, poly(butyl lactate acrylate), with a relative low Tg (-20 °C), good thermal stability (5% wt. loss at 340 °C) and low toxicity was evaluated as a sustainable middle block in all-acrylic ABA copolymers using isosorbide and vanillin-derived glassy polyacrylates as representative end blocks. Thermal, morphological and mechanical properties of copolymers containing hard segment contents of <20 wt% were evaluated to demonstrate the suitability of rubbery poly(alkyl lactate) building blocks for developing functional sustainable materials. Noteworthy, 180° peel adhesion measurements showed that the synthesized biosourced all-acrylic ABA copolymers possess competitive performance when compared with commercial pressure-sensitive tapes.


Subject(s)
Acrylates/chemistry , Lactic Acid/chemistry , Polymers/chemistry , Benzaldehydes/chemistry , Isosorbide/chemistry , Lactates/chemistry , Polymerization , Solvents/chemistry
7.
Biomacromolecules ; 21(10): 4313-4325, 2020 10 12.
Article in English | MEDLINE | ID: mdl-32897693

ABSTRACT

Well-defined hydrophilic telechelic dibromo poly(triethylene glycol monomethyl ether acrylate)s were prepared by single-electron transfer living radical polymerization employing a hydrophobic difunctional initiator containing acetal and disulfide linkages. Although the resulting homopolymers have low hydrophobic contents (<8.5 wt % of the entire structure), they are able to self-assemble in water into nanoscale micellelike particles via chain folding. Acetal and disulfide linkages were demonstrated to be "keystone" units for their dual stimuli-responsive behavior under biochemically relevant conditions. Their site-selective middle-chain cleavage under both acidic pH and reductive conditions splits the homopolymer into two equal-sized fragments and results in the breakdown of the nanoassemblies. The drug loading/delivery potential of these nanoparticles was investigated using curcumine combining in vitro drug release, cytotoxicity, and cellular uptake studies with human cancer cell lines (HT-29 and HeLa). Importantly, this strategy may be extended to prepare innovative nanoplatforms based on hydrophilic homopolymers or random copolymers for intelligent drug delivery.


Subject(s)
Drug Carriers , Nanoparticles , Drug Liberation , Humans , Hydrogen-Ion Concentration , Micelles , Polyethylene Glycols , Polymers
8.
J Am Chem Soc ; 142(36): 15265-15270, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32815364

ABSTRACT

Biological macromolecules such as proteins and nucleic acids are monodisperse just as low-molar-mass organic compounds are. However, synthetic macromolecules contain mixtures of different chain lengths, the most uniform being generated by living polymerizations, which exhibit a maximum of 1-3% of chains with the desired length. Monodisperse natural and synthetic oligomers can be obtained in low quantities by tedious, multistep iterative methods. Here we report a methodology to synthesize monodisperse synthetic macromolecules by self-interrupted living polymerization. This methodology relies on a concept that combines supramolecular and macromolecular chemistry and differs from the conventional reactivity principles employed in the synthesis of polymers for over 100 years.

9.
Biomacromolecules ; 21(5): 1902-1919, 2020 05 11.
Article in English | MEDLINE | ID: mdl-31990544

ABSTRACT

A mixed-ligand effect was observed for mixtures of tris(2-dimethylaminoethyl)amine (Me6-TREN) with tris(2-aminoethyl)amine (TREN) ligands during Cu(0) wire-catalyzed, single-electron transfer-living radical polymerization (SET-LRP) of methyl acrylate (MA) initiated with bis(2-bromopropionyl)ethane (BPE) in DMSO. The external order of reaction of SET-LRP both in the presence of Me6-TREN, TREN and of the mixed-ligand Me6-TREN/TREN, in DMSO, demonstrated a catalytic activity for DMSO similar to that reported in the presence of Cu(0) powder. The catalytic activity of DMSO, with close to 100% chain-end functionality, facilitates the much less expensive TREN to act as a very efficient ligand that is competitive with Me6-TREN and with the mixed-ligand and revitalizes TREN into an excellent ligand. The highest activity of the mixed-ligand at 1/1 ratio between ligands suggests that in addition to a fast exchange between these two ligands, a new single dynamic ligand stabilized by hydrogen-bonding, may generate these results.


Subject(s)
Copper , Dimethyl Sulfoxide , Electron Transport , Ligands , Polymerization
10.
Biomacromolecules ; 21(1): 250-261, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31566368

ABSTRACT

The mixed-ligand system consisting of tris(2-aminoethyl)amine (TREN) and tris(2-dimethylaminoethyl)amine (Me6-TREN) during the Cu(0) wire-catalyzed single electron transfer-living radical polymerization (SET-LRP) of methyl acrylate (MA) in "programmed" biphasic mixtures of the dipolar aprotic solvents NMP, DMF, and DMAc with H2O is reported. Kinetic and chain end analysis studies by NMR and MALDI-TOF before and after thio-bromo "click" reaction demonstrated that Me6-TREN complements and makes the less expensive TREN a very efficient ligand in the absence of externally added Cu(II)Br2. Statistical analysis of the kinetic data together with control experiments demonstrated that this mixed-ligand effect enhanced the apparent rate constant of propagation, monomer conversion, and molecular weight control. The most efficient effect was observed at a 1/1 molar ratio between these two ligands, suggesting that in addition to a fast exchange between the two ligands, a new single dynamic ligand generated by hydrogen bonding may be responsible for the mixed ligand observed.


Subject(s)
Copper/chemistry , Ethylenediamines/chemistry , Polymerization , Catalysis , Kinetics , Ligands , Magnetic Resonance Spectroscopy , Polymethyl Methacrylate/chemistry , Solvents/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Water/chemistry
11.
Biomacromolecules ; 20(8): 3200-3210, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31298529

ABSTRACT

The use of stimuli-cleavable difunctional initiators containing a discrete single-type cleavable junction represents a general strategy to prepare mid-chain-degradable vinylic polymers. Here, we present a series of α-haloester-type programmed initiators encoding multiple single-type and dual-type cleavable junctions. Multiple single-cleavage groups increase the cleavage rate, whereas double-dual sites provide access to multiple mechanisms for cleavage. Single-electron transfer living radical polymerization was employed to generate well-defined mid-chain-cleavable poly(methyl acrylate)s designed with low-pH, low-pH/reduction, or low-pH/UV light cleavable linkages. Kinetic studies demonstrated that the polymerizations are living when using various catalytic Cu(0) sources (wire and powder), ligands (Me6-TREN and TREN), and solvent sources (homogeneous and "programmed" biphasic). Moreover, structural analyses by NMR and matrix-assisted laser desorption/ionization-time-of-flight confirmed the near-perfect chain-end functionality of these stimuli-cleavable polymers derived from programmed initiators. A rigorous gel permeation chromatography study demonstrated that the combination of multiple acetal, disulfide, or 2-nitroresorcinol-derived acetal junctions offer attractive possibilities in terms of selective cleavage and orthogonal degradation.


Subject(s)
Acrylates/chemistry , Copper/chemistry , Disulfides/chemistry , Polymers/chemistry , Vinyl Compounds/chemistry , Catalysis , Electron Transport , Polymerization
12.
Biomacromolecules ; 20(5): 2135-2147, 2019 05 13.
Article in English | MEDLINE | ID: mdl-31013072

ABSTRACT

The precise synthesis of polymers derived from alkyl lactate ester acrylates is reported for the first time. Kinetic experiments were conducted to demonstrate that Cu(0) wire-catalyzed single electron transfer-living radical polymerization (SET-LRP) in alcohols at 25 °C provides a green methodology for the LRP of this forgotten class of biobased monomers. The acrylic derivative of ethyl lactate (EL) solvent and homologous structures with methyl and n-butyl ester were polymerized with excellent control over molecular weight, molecular weight distribution, and chain-end functionality. Kinetics plots in conventional alcohols such as ethanol and methanol were first order in the monomer, with molecular weight increasing linearly with conversion. However, aqueous EL mixtures were found to be more suitable than pure EL to mediate the SET-LRP process. The near-quantitative monomer conversion and high bromine chain-end functionality, demonstrated by matrix-assisted laser desorption ionization time-of-flight analysis, further allowed the preparation of innovative biobased block copolymers containing rubbery poly(ethyl lactate acrylate) poly(ELA) sequences. For instance, the poly(ELA)- b-poly(glycerol acrylate) block copolymer self-assembled in water to form stable micelles with chiral lactic acid-derived block-forming micellar core as confirmed by the pyrene-probe-based fluorescence technique. Dynamic light scattering and transmission electron microscopy measurements revealed the nanosize spherical morphology for these biobased aggregates.


Subject(s)
Acrylates , Lactates/chemistry , Polymers/chemical synthesis , Catalysis , Copper/chemistry , Micelles , Polymerization , Polymers/chemistry
13.
Biomacromolecules ; 20(4): 1816-1827, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30882211

ABSTRACT

Single-electron transfer-living radical polymerization (SET-LRP) in "programmed" aqueous organic biphasic systems eliminates the judicious choice of solvent and also provides accelerated reaction rates. Herein, we report efforts to expand the monomer scope for these systems by targeting methacrylic monomers and polymers. Various environmentally friendly aqueous alcoholic mixtures were used in combination with Cu(0) wire catalyst, tris(2-dimethylaminoethyl)amine (Me6-TREN) ligand, and p-toluenesulfonyl chloride (Ts-Cl) initiator to deliver well-defined polymethacrylates from methyl methacrylate, butyl methacrylate, and other monomers derived from biomass feedstock (e.g., lactic acid, isosorbide, furfural, and lauric acid). The effect of water on the nature of the reaction mixture during the SET-LRP process, reaction rate, and control of the polymerization is discussed. The control retained under the reported conditions is demonstrated by synthesizing polymers of different targeted molar mass as well as quasi-block AB copolymers by "in situ" chain extension at high conversion. These results highlight the capabilities of SET-LRP to provide sustainable solutions based on renewable resources.


Subject(s)
Alcohols/chemistry , Copper , Methacrylates/chemistry , Methylmethacrylate/chemistry , Petroleum/analysis , Polymerization , Catalysis , Solvents/chemistry
14.
ACS Macro Lett ; 8(9): 1200-1208, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-35619448

ABSTRACT

A middle-chain cleavable telechelic poly(oligoethylene glycol) methyl ether acrylate) (MCCT-POEGA-Br) was synthesized by single-electron transfer living radical polymerization (SET-LRP) initiated from an acetal-containing hydrophobic sequence-defined difunctional initiator. In aqueous medium, above a certain concentration, this hydrophilic homopolymer self-assembled into nanogel-like large micelles that exhibit an encapsulating capacity for both hydrophobic and hydrophilic cargo. The sequence-defined cleavage pattern encoded in the initiator residue allowed precise middle-chain cleavage, leading to quantitative disassembly of the corresponding nanoobjects. Dye release studies performed in an acidic environment demonstrated the potential of this new design concept in the preparation of pH-responsive nanocarriers. In addition, fluorescently tagged nanoassemblies could also be obtained via the thio-bromo "click" modification of MCCT-POEGA-Br prior to self-assembly. This strategy may provide facile access to a diversity of multistimuli-responsive nanocarriers based on commercially available hydrophilic monomers and sequence-defined difunctional initiators synthesized by this simple design strategy.

15.
Biomacromolecules ; 19(11): 4480-4491, 2018 11 12.
Article in English | MEDLINE | ID: mdl-30295465

ABSTRACT

The fluorinated alcohol 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) is an especially effective solvent for solubilizing a wide range of polymers. However, the performance of HFIP as SET-LRP solvent has classically been questioned due to its poor Cu(I)X disproportionating properties. Taking advantage of the fast and quantitative disproportionation of Cu(I)X in water, SET-LRP in organic solvent/water mixtures rids the organic solvent of mediating this fundamental event. Here, the Cu(0) wire-catalyzed SET-LRP synthesis of well-defined poly(methyl acrylate)s and poly(butyl acrylate)s with narrow molecular weight distribution and near perfect bromine chain end functionality is reported in HFIP/water mixtures. The results reported here support the potential of HFIP/water mixtures in the preparation of more complex architectures including polymers with dual control over molecular weight and tacticity. Since HFIP is also a classic solvent for the denaturation of proteins this SET-LRP system is also expected to find applications in the grafting of protein.


Subject(s)
Acrylates/chemistry , Copper/chemistry , Polymers/chemistry , Polymethacrylic Acids/chemistry , Propanols/chemistry , Water/chemistry , Catalysis , Polymerization
16.
Biomacromolecules ; 19(4): 1256-1268, 2018 04 09.
Article in English | MEDLINE | ID: mdl-29513004

ABSTRACT

Cu(0) wire-catalyzed single electron transfer-living radical polymerization (SET-LRP) of (-)-menthyl acrylate, a biobased hydrophobic monomer, was investigated at 25 °C in ethanol, isopropanol, ethyl lactate, 2,2,2-trifluoroethanol (TFE), and 2,2,3,3-tetrafluoropropanol (TFP). All solvents are known to promote, in the presence of N ligands, the mechanistically required self-regulated disproportionation of Cu(I)Br into Cu(0) and Cu(II)Br2. Both fluorinated alcohols brought out their characteristics of universal SET-LRP solvents and showed the proper polarity balance to mediate an efficient polymerization of this bulky and hydrophobic monomer. Together with the secondary alkyl halide initiator, methyl 2-bromopropionate (MBP), and the tris(2-dimethylaminoethyl)amine (Me6-TREN) ligand, TFE and TPF mediated an efficient SET-LRP of MnA at room temperature that proceeds through a self-generated biphasic system. The results presented here demonstrate that Cu(0) wire-catalyzed SET-LRP can be used to target polyMnA with different block lengths and narrow molecular weight distribution at room temperature. Indeed, the use of a combination of techniques that include GPC, 1H NMR, MALDI-TOF MS performed before and after thioetherification of bromine terminus via "thio-bromo" click chemistry, and in situ reinitiation copolymerization experiments supports the near perfect chain end functionality of the synthesized biobased hydrophobic polymers. These results expand the possibilities of SET-LRP into the area of renewable resources where hydrophobic compounds are widespread.


Subject(s)
Catalysis , Copper/chemistry , Polymerization , 2-Propanol/chemistry , Acrylates/chemistry , Bromine/chemistry , Electron Transport , Ethanol/chemistry , Hydrophobic and Hydrophilic Interactions , Lactates/chemistry , Ligands , Trifluoroethanol/chemistry
17.
Biomacromolecules ; 18(10): 3447-3456, 2017 Oct 09.
Article in English | MEDLINE | ID: mdl-28891645

ABSTRACT

Ethyl lactate (EtLa), a green and safe agrochemical solvent, is gifted with some properties that make it a good candidate for SET-LRP. It dissolves CuBr2, mediates an efficient disproportionation of CuBr in the presence of tris(2-(dimethylamino)ethyl)amine (Me6-TREN), and is capable to dissolve both aqueous (polar) and hydrocarbon (nonpolar) soluble monomers and polymers. Here, we report that EtLa is an excellent solvent for the Cu(0) wire-catalyzed SET-LRP to produce both hydrophilic and hydrophobic polyacrylates that exhibit precise chain end functionality. These results will expand the table of SET-LRP solvents with a new green member of biological origin that is also biodegradable and, therefore, are expected to contribute to continue expanding the use of SET-LRP in the field of biomacromolecules, bioconjugates, and other biology and medicine related disciplines.


Subject(s)
Alcohols/chemistry , Lactates/chemistry , Solvents/chemical synthesis , Acrylic Resins/chemistry , Bromides/chemistry , Copper/chemistry , Free Radicals/chemistry , Polymerization
18.
Biomacromolecules ; 18(10): 2981-3008, 2017 Oct 09.
Article in English | MEDLINE | ID: mdl-28849905

ABSTRACT

The most fundamental aspects of single-electron transfer (SET) principles are presented. They are discussed according to different definitions used by expert practitioners and are applied to SET living radical polymerization (SET-LRP) according to the definition of the division of organic chemistry of IUPAC that relies on principles elaborated by Taube, Eberson, Chanon, and Kochi. Additional definitions are also discussed to help clarify for the nonexpert contradictory literature reports. Subsequently, the principles and evolution of SET-LRP together with the methodologies currently available to practice it are discussed. It is expected that this Perspective will be able to help experts and nonexperts practice, develop, and invent new concepts and methodologies for SET-LRP to advance its status and the status of other living radical polymerization methods to the level of the most precise living polymerization methods.


Subject(s)
Electrons , Free Radicals/chemistry , Polymerization , Copper/chemistry , Electron Transport , Halogens/chemistry
19.
Biomacromolecules ; 18(8): 2610-2622, 2017 Aug 14.
Article in English | MEDLINE | ID: mdl-28656750

ABSTRACT

To continue expanding the use of Single Electron Transfer-Living Radical Polymerization (SET-LRP) in applications at the interface between macromolecular science, biomacromolecules, biology and medicine, it is essential to develop novel initiators that do not compromise the structural stability of synthesized polymers in biological environments. Here, we report that stable 2-bromopropionyl peptoid-type initiators such as 1,4-bis(2-bromopropionyl)piperazine and 4-(2-bromopropionyl)morpholine are an alternative that meets the standards reached by the well-known secondary and tertiary α-haloester-type initiators in terms of excellent control over molecular weight evolution and distribution as well as polymer chain ends. SET-LRP methodologies in organic, aqueous, and biphasic organic-aqueous media were evaluated for this purpose.


Subject(s)
Cytostatic Agents/chemistry , Cytostatic Agents/chemical synthesis , Peptoids/chemistry , Peptoids/chemical synthesis
20.
Biomacromolecules ; 18(4): 1039-1063, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28276244

ABSTRACT

Single electron transfer-living radical polymerization (SET-LRP) represents a robust and versatile tool for the synthesis of vinyl polymers with well-defined topology and chain end functionality. The crucial step in SET-LRP is the disproportionation of the Cu(I)X generated by activation with Cu(0) wire, powder, or nascent Cu(0) generated in situ into nascent, extremely reactive Cu(0) atoms and nanoparticles and Cu(II)X2. Nascent Cu(0) activates the initiator and dormant chains via a homogeneous or heterogeneous outer-sphere single-electron transfer mechanism (SET-LRP). SET-LRP provides an ultrafast polymerization of a plethora of monomers (e.g., (meth)-acrylates, (meth)-acrylamides, styrene, and vinyl chloride) including hydrophobic and water insoluble to hydrophilic and water soluble. Some advantageous features of SET-LRP are (i) the use of Cu(0) wire or powder as readily available catalysts under mild reaction conditions, (ii) their excellent control over molecular weight evolution and distribution as well as polymer chain ends, (iii) their high functional group tolerance allowing the polymerization of commercial-grade monomers, and (iv) the limited purification required for the resulting polymers. In this Perspective, we highlight the recent advancements of SET-LRP in the synthesis of biomacromolecules and of their conjugates.


Subject(s)
Electron Transport , Electrons , Macromolecular Substances/chemical synthesis , Polymerization , Acrylamides/chemistry , Acrylates/chemistry , Copper/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Weight , Nanoparticles/chemistry , Styrene/chemistry , Vinyl Compounds/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...