Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Terahertz Sci Technol ; 12(2): 151-164, 2022 Mar.
Article in English | MEDLINE | ID: mdl-36185397

ABSTRACT

A system concept for online alignment verification of millimeter-wave, corneal reflectometry is presented. The system utilizes beam scanning to generate magnitude-only reflectivity maps of the cornea at 650 GHz and compares these images to a precomputed/measured template map to confirm/reject sufficient alignment. A system utilizing 5 off-axis parabolic mirrors, a thin film beam splitter, and 2-axis galvanometric mirror was designed, simulated, and evaluated with geometric and physical optics. Simulation results informed the construction of a demonstrator system which was tested with a reference reflector. Similarity metrics computed with the aligned template and 26 misaligned positions, distributed on a 0.5 mm x 0.5 mm x 0.5 mm mesh, demonstrated sufficient misalignment detection sensitivity in 23 out of 26 positions. The results show that positional accuracy on the order of 0.5 mm is possible using 0.462 mm wavelength radiation due to the perturbation of coupling efficiency via beam distortion and beam walk-off.

2.
IEEE Trans Terahertz Sci Technol ; 8(1): 1-12, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29450106

ABSTRACT

Reflection mode Terahertz (THz) imaging of corneal tissue water content (CTWC) is a proposed method for early, accurate detection and study of corneal diseases. Despite promising results from ex vivo and in vivo cornea studies, interpretation of the reflectivity data is confounded by the contact between corneal tissue and dielectric windows used to flatten the imaging field. Herein, we present an optical design for non-contact THz imaging of cornea. A beam scanning methodology performs angular, normal incidence sweeps of a focused beam over the corneal surface while keeping the source, detector, and patient stationary. A quasioptical analysis method is developed to analyze the theoretical resolution and imaging field intensity profile. These results are compared to the electric field distribution computed with a physical optics analysis code. Imaging experiments validate the optical theories behind the design and suggest that quasioptical methods are sufficient for designing of THz corneal imaging systems. Successful imaging operations support the feasibility of non-contact in vivo imaging. We believe that this optical system design will enable the first, clinically relevant, in vivo exploration of CTWC using THz technology.

3.
Opt Express ; 21(9): 10867-77, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23669943

ABSTRACT

Optical antennas and resonant structures have been extensively investigated due to its potential for electromagnetic detection and energy harvesting applications. However their integration into large arrays and the role of connection lines between individual antennas has drawn little attention. This is necessary if we want to exploit its potential constructively and to enable economical large-scale fabrication. In this contribution we point out some features that an efficient antenna array should address. Experimental measurements on aluminum microbolometers are compared to electromagnetic simulations, it is shown that the finite size of a real array and the interconnection lines interact and affect the global performance.


Subject(s)
Computer-Aided Design , Infrared Rays , Optical Devices , Radiometry/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...