Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Cell Biol ; 23(10): 1095-1104, 2021 10.
Article in English | MEDLINE | ID: mdl-34616022

ABSTRACT

BRCA2-mutant cells are defective in homologous recombination, making them vulnerable to the inactivation of other pathways for the repair of DNA double-strand breaks (DSBs). This concept can be clinically exploited but is currently limited due to insufficient knowledge about how DSBs are repaired in the absence of BRCA2. We show that DNA polymerase θ (POLθ)-mediated end joining (TMEJ) repairs DSBs arising during the S phase in BRCA2-deficient cells only after the onset of the ensuing mitosis. This process is regulated by RAD52, whose loss causes the premature usage of TMEJ and the formation of chromosomal fusions. Purified RAD52 and BRCA2 proteins both block the DNA polymerase function of POLθ, suggesting a mechanism explaining their synthetic lethal relationships. We propose that the delay of TMEJ until mitosis ensures the conversion of originally one-ended DSBs into two-ended DSBs. Mitotic chromatin condensation might further serve to juxtapose correct break ends and limit chromosomal fusions.


Subject(s)
BRCA2 Protein/metabolism , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA-Directed DNA Polymerase/metabolism , Homologous Recombination , Mitosis , Rad52 DNA Repair and Recombination Protein/metabolism , BRCA2 Protein/genetics , Cell Cycle , DNA-Directed DNA Polymerase/genetics , HeLa Cells , Humans , Rad52 DNA Repair and Recombination Protein/genetics , DNA Polymerase theta
3.
Mol Cell Oncol ; 8(6): 2007029, 2021.
Article in English | MEDLINE | ID: mdl-35419469

ABSTRACT

How cells deal with DNA breaks during mitosis is not well understood. While canonical non-homologous end-joining predominates in interphase, it is inhibited in mitosis to avoid telomere fusions. DNA polymerase θ mediated end-joining appears to be repressed in interphase, but promotes break repair in mitosis. The nature and induction time of breaks might determine their fate during mitosis.

4.
Hum Mutat ; 39(12): 1847-1853, 2018 12.
Article in English | MEDLINE | ID: mdl-30199583

ABSTRACT

Ataxia Telangiectasia and Rad3 related (ATR) is one of the main regulators of the DNA damage response. It coordinates cell cycle checkpoint activation, replication fork stability, restart and origin firing to maintain genome integrity. Mutations of the ATR gene have been reported in Seckel patients, who suffer from a rare genetic disease characterized by severe microcephaly and growth retardation. Here, we report the case of a Seckel patient with compound heterozygous mutations in ATR. One allele has an intronic mutation affecting splicing of neighboring exons, the other an exonic missense mutation, producing the variant p.Lys1665Asn, of unknown pathogenicity. We have modeled this novel missense mutation, as well as a previously described missense mutation p.Met1159Ile, and assessed their effect on ATR function. Interestingly, our data indicate that both missense mutations have no direct effect on protein function, but rather result in defective ATR splicing. These results emphasize the importance of splicing mutations in Seckel Syndrome.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Dwarfism/genetics , Microcephaly/genetics , Mutation, Missense , RNA Splicing , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line , Chickens , Dwarfism/metabolism , Exons , Humans , Introns , Microcephaly/metabolism , Exome Sequencing
5.
Cell Rep ; 5(4): 1095-107, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24268773

ABSTRACT

Cells must accurately replicate and segregate their DNA once per cell cycle in order to successfully transmit genetic information. During S phase in the presence of agents that cause replication stress, ATR-dependent checkpoints regulate origin firing and the replication machinery as well as prevent untimely mitosis. Here, we investigate the role of ATR during unperturbed growth in vertebrate cells. In the absence of ATR, individual replication forks progress more slowly, and an increased number of replication origins are activated. These cells also enter mitosis early and divide more rapidly, culminating in chromosome bridges and laggards at anaphase, failed cytokinesis, and cell death. Interestingly, cell death can be rescued by prolonging mitosis with partial inhibition of the mitotic cyclin-dependent kinase 1. Our data indicate that one of the essential roles of ATR during normal growth is to minimize the level of unreplicated DNA before the onset of mitosis.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , DNA Replication/genetics , M Phase Cell Cycle Checkpoints/genetics , Animals , CDC2 Protein Kinase/antagonists & inhibitors , Cell Death/genetics , Cell Line , Cell Proliferation , Chickens , Chromatids/genetics , Cytokinesis/genetics , Gene Knockout Techniques , Quinolines/pharmacology , Replication Origin/genetics , Thiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...