Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1362569, 2024.
Article in English | MEDLINE | ID: mdl-38525143

ABSTRACT

Introduction: Fungal pathogens cause major yield losses in agriculture and reduce food quality and production worldwide. Purpose: To evaluate new safer alternatives to chemicals for disease management and preserve the shelf life of food, this research was conducted to: determine the chemical composition of the essential oils (EOs) of Thymus serpyllum and Thymus piperella chemotypes 1 and 2; investigate the antifungal potential of EOs in vitro against: Alternaria alternata, Bipolaris spicifera, Curvularia hawaiiensis, Fusarium oxysporum f. sp. lycopersici, Penicillium italicum, Botryotinia fuckeliana; evaluate a natural T. serpyllum extract biofilm to conserve rice grain and cherry tomatoes. Method: EOs were analyzed by GC-MS+GC-FID. EOs' antifungal activity was evaluated by dissolving Thymus extracts in PDA. Petri dishes were inoculated with disks of each fungus and incubated at 25°C for 7 days. Results: The T. serpyllum EO displayed the best Mycelial Growth Inhibition. The antifungal effect of the T. serpyllum EO biofilm was evaluated on rice caryopsis. Disinfected grains were dipped in a conidial suspension of each fungus and sprayed with EO (300 and 600 µg/mL) prepared in Tween 20. Grains were stored. The percentage of infected grains was recorded for 30 days. The T. serpyllum EO effect on cherry tomato conservation was evaluated in vivo. Wounded fruit were immersed in the T. serpyllum EO (300 and 400 µg/mL) and inoculated with Fusarium oxysporum f. sp. lycopersici. Fruit were evaluated for 7 and 14 days. Chemical profiles thymol/carvacrol for T. serpyllum, carvacrol for T. piperella Tp1 and thymol for T. piperella Tp2 were defined. The three evaluated EOs reduced all the studied phytopathogens' fungal growth. The T. serpyllum biofilm was effective with rice storage and against Fusarium oxysporum f. sp. lycopersici for extending the shelf life of tomatoes in warehouses and storing postharvest cherry tomatoes. Conclusion: We suggest applying these EOs as biofilms for safe food conservation to replace synthetic products.

2.
Molecules ; 25(3)2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32012931

ABSTRACT

In the search of sustainable and environmentally friendly methods for weed control, there is increasing interest in essential oils (EOs) as an approach to reduce synthetic herbicide use. The phytotoxicity of Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus EOs against the noxious weed Erigeron bonariensis were evaluated in pre- and post-emergence assays in greenhouse conditions. The EOs were applied at 2, 4, and 8 µL/mL, with Fitoil used as emulsifier. In post-emergence, two ways of application were tested, irrigation and spraying. Several germination parameters (germination %, mean germination time, and synchrony of the germination process) were evaluated in pre-emergence tests, and the phytotoxicity level was assessed in post-emergence. In pre-emergence, all EOs significantly reduced seed germination as compared to the controls, ranking: T. capitata > E. camaldulensis > S. chamaecyparissus > M. piperita. The effectiveness of all EOs varied with the tested dose, always following the rank 2 µL < 4 µL < 8 µL, with T. capitata EO showing full effectiveness even at the lowest dose. In post-emergence, T. capitata was the most effective EO, inducing a rather complete inhibition of plantlet growth at the highest two doses. These EOs demonstrated to have good potential for the formulation of natural herbicides.


Subject(s)
Asteraceae/chemistry , Erigeron/growth & development , Eucalyptus/chemistry , Lamiaceae/chemistry , Mentha piperita/chemistry , Oils, Volatile/pharmacology , Agricultural Irrigation , Dose-Response Relationship, Drug , Emulsifying Agents/chemistry , Erigeron/drug effects , Germination/drug effects , Oils, Volatile/chemistry , Plant Oils/chemistry , Plant Weeds/drug effects , Plant Weeds/growth & development , Weed Control
3.
Chem Biodivers ; 14(12)2017 Dec.
Article in English | MEDLINE | ID: mdl-28886241

ABSTRACT

Essential oil (EO) extracts coming from two representative populations of Mentha suaveolens Ehrh. subesp. suaveolens in Eastern Iberian Peninsula were analyzed by gas chromatography coupled with mass spectrometry and flame ion detector. Plant sampling was carried out in the morning and evening in order to study diurnal variation in EO profiles. Likewise, leaves and inflorescences were analyzed separately. Two chemotypes corresponding to each one of the populations were identified, with piperitenone oxide (35.2 - 74.3%) and piperitone oxide (83.9 - 91.3%), respectively, as major compounds. Once different chemotypes were identified, canonical correspondence analysis was employed to evaluate the effect of the bioclimatic and edaphic factors recorded in each location on the observed differences. Statistical analysis suggested that these chemotypes were closely related to specific environmental factors, mainly the bioclimatic ones. Concretely, piperitenone oxide chemotype can be associated to supramediterranean bioclimatic conditions and soils with major salinity and water field capacity. On the other hand, the most volatile fraction (hydrocarbon monoterpenes) reached its higher level in the morning; specifically, a noticeable amount of limonene was found in morning samples of flowers (4.8 - 10.6%). This fact can be related to ecological role of volatile compounds in order to attract pollinator insects.


Subject(s)
Mentha/chemistry , Oils, Volatile/chemistry , Climate , Cyclohexane Monoterpenes , Gas Chromatography-Mass Spectrometry , Mentha/metabolism , Monoterpenes/analysis , Monoterpenes/chemistry , Oils, Volatile/analysis , Oxides/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Soil/chemistry , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...