Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Sensors (Basel) ; 24(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38894439

ABSTRACT

Sixth-generation (6G) wireless networks demand a more efficient implementation of non-orthogonal multiple access (NOMA) schemes for severe multipath fading environments to serve multiple users. Using non-orthogonal multiple access (NOMA) schemes in IoT 6G networks is a promising solution to allow multiple users to share the same spectral and temporal resource, increasing spectral efficiency and improving the network's capacity. In this work, we have evaluated the performance of a novel progressive pattern interleaver (PPI) employed to distinguish the users in interleaved division multiple access (IDMA) schemes, suggested by 3GPP guidelines as a NOMA scheme, with two multi-carrier modulation schemes known as single-carrier frequency-division multiple access (SC-FDMA) and orthogonal frequency-division multiplexing (OFDM), resulting in SC-FDMA-IDMA and OFDM-IDMA schemes. Both schemes are multi-carrier schemes with orthogonal sub-carriers to deal against inter-symbol interference (ISI) and orthogonal interleavers for the simultaneous access of multiple users. It has been suggested through simulation outcomes that PPI performance is adequate with SC-FDMA-IDMA and OFDM-IDMA schemes in terms of bit error rate (BER) under multipath channel conditions. Moreover, regarding bandwidth requirement and the implementation complexity of the transmitted interleaver structure, PPI is superior to the conventional random interleaver (RI).

2.
Sensors (Basel) ; 24(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38400299

ABSTRACT

Studying soil composition is vital for agricultural and edaphology disciplines. Presently, colorimetry serves as a prevalent method for the on-site visual examination of soil characteristics. However, this technique necessitates the laboratory-based analysis of extracted soil fragments by skilled personnel, leading to substantial time and resource consumption. Contrastingly, sensor techniques effectively gather environmental data, though they mostly lack in situ studies. Despite this, sensors offer substantial on-site data generation potential in a non-invasive manner and can be included in wireless sensor networks. Therefore, the aim of the paper is to develop a low-cost red, green, and blue (RGB)-based sensor system capable of detecting changes in the composition of the soil. The proposed sensor system was found to be effective when the sample materials, including salt, sand, and nitro phosphate, were determined under eight different RGB lights. Statistical analyses showed that each material could be classified with significant differences based on specific light variations. The results from a discriminant analysis documented the 100% prediction accuracy of the system. In order to use the minimum number of colors, all the possible color combinations were evaluated. Consequently, a combination of six colors for salt and nitro phosphate successfully classified the materials, whereas all the eight colors were found to be effective for classifying sand samples. The proposed low-cost RGB sensor system provides an economically viable and easily accessible solution for soil classification.

3.
Math Biosci Eng ; 20(11): 19174-19190, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-38052595

ABSTRACT

Smart technologies are advancing the development of cutting-edge systems by exploring the future network. The Internet of Things (IoT) and many multimedia sensors interact with each other for collecting and transmitting visual data. However, managing enormous amounts of data from numerous network devices is one of the main research challenges. In this context, various IoT systems have been investigated and have provided efficient data retrieval and processing solutions. For multimedia systems, however, controlling inefficient bandwidth utilization and ensuring timely transmission of vital information are key research concerns. Moreover, to transfer multimedia traffic while balancing communication costs for the IoT system, a sustainable solution with intelligence in real-life applications is demanded. Furthermore, trust must be formed for technological advancement to occur; such an approach provides the smart communication paradigm with the incorporation of edge computing. This study proposed a model for optimizing multimedia using a combination of edge computing intelligence and authentic strategies. Mobile edges analyze network states to discover the system's status and minimize communication disruptions. Moreover, direct and indirect authentication determines the reliability of data forwarders and network stability. The proposed authentication approach minimizes the possibility of data compromise and increases trust in multimedia surveillance systems. Using simulation testing, the proposed model outperformed other comparable work in terms of byte delivery, packet overhead, packet delay, and data loss metrics.

4.
Sensors (Basel) ; 23(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37960470

ABSTRACT

Vehicle malfunctions have a direct impact on both human and road safety, making vehicle network security an important and critical challenge. Vehicular ad hoc networks (VANETs) have grown to be indispensable in recent years for enabling intelligent transport systems, guaranteeing traffic safety, and averting collisions. However, because of numerous types of assaults, such as Distributed Denial of Service (DDoS) and Denial of Service (DoS), VANETs have significant difficulties. A powerful Network Intrusion Detection System (NIDS) powered by Artificial Intelligence (AI) is required to overcome these security issues. This research presents an innovative method for creating an AI-based NIDS that uses Deep Learning methods. The suggested model specifically incorporates the Self Attention-Based Bidirectional Long Short-Term Memory (SA-BiLSTM) for classification and the Cascaded Convolution Neural Network (CCNN) for learning high-level features. The Multi-variant Gradient-Based Optimization algorithm (MV-GBO) is applied to improve CCNN and SA-BiLSTM further to enhance the model's performance. Additionally, information gained using MV-GBO-based feature extraction is employed to enhance feature learning. The effectiveness of the proposed model is evaluated on reliable datasets such as KDD-CUP99, ToN-IoT, and VeReMi, which are utilized on the MATLAB platform. The proposed model achieved 99% accuracy on all the datasets.

5.
Sensors (Basel) ; 23(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37571500

ABSTRACT

The increasing availability of Electric Vehicles (EVs) is driving a shift away from traditional gasoline-powered vehicles. Subsequently, the demand for Electric Vehicle Charging Systems (EVCS) is rising, leading to the significant growth of EVCS as public and private charging infrastructure. The cybersecurity-related risks in EVCS have significantly increased due to the growing network of EVCS. In this context, this paper presents a cybersecurity risk analysis of the network of EVCS. Firstly, the recent advancements in the EVCS network, recent EV adaptation trends, and charging use cases are described as a background of the research area. Secondly, cybersecurity aspects in EVCS have been presented considering infrastructure and protocol-centric vulnerabilities with possible cyber-attack scenarios. Thirdly, threats in EVCS have been validated with real-time data-centric analysis of EV charging sessions. The paper also highlights potential open research issues in EV cyber research as new knowledge for domain researchers and practitioners.

6.
Sensors (Basel) ; 23(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37447662

ABSTRACT

Essential oils are valuable in various industries, but their easy adulteration can cause adverse health effects. Electronic nasal sensors offer a solution for adulteration detection. This article proposes a new system for characterising essential oils based on low-cost sensor networks and machine learning techniques. The sensors used belong to the MQ family (MQ-2, MQ-3, MQ-4, MQ-5, MQ-6, MQ-7, and MQ-8). Six essential oils were used, including Cistus ladanifer, Pinus pinaster, and Cistus ladanifer oil adulterated with Pinus pinaster, Melaleuca alternifolia, tea tree, and red fruits. A total of up to 7100 measurements were included, with more than 118 h of measurements of 33 different parameters. These data were used to train and compare five machine learning algorithms: discriminant analysis, support vector machine, k-nearest neighbours, neural network, and naive Bayesian when the data were used individually or when hourly mean values were included. To evaluate the performance of the included machine learning algorithms, accuracy, precision, recall, and F1-score were considered. The study found that using k-nearest neighbours, accuracy, recall, F1-score, and precision values were 1, 0.99, 0.99, and 1, respectively. The accuracy reached 100% with k-nearest neighbours using only 2 parameters for averaged data or 15 parameters for individual data.


Subject(s)
Oils, Volatile , Bayes Theorem , Machine Learning , Algorithms , Neural Networks, Computer , Support Vector Machine
7.
Sensors (Basel) ; 23(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37112254

ABSTRACT

Eutrophication is the excessive growth of algae in water bodies that causes biodiversity loss, reducing water quality and attractiveness to people. This is an important problem in water bodies. In this paper, we propose a low-cost sensor to monitor eutrophication in concentrations between 0 to 200 mg/L and in different mixtures of sediment and algae (0, 20, 40, 60, 80, and 100% algae, the rest are sediment). We use two light sources (infrared and RGB LED) and two photoreceptors at 90° and 180° of the light sources. The system has a microcontroller (M5stacks) that powers the light sources and obtains the signal received by the photoreceptors. In addition, the microcontroller is responsible for sending information and generating alerts. Our results show that the use of infrared light at 90° can determine the turbidity with an error of 7.45% in NTU readings higher than 2.73 NTUs, and the use of infrared light at 180° can measure the solid concentration with an error of 11.40%. According to the determination of the % of algae, the use of a neural network has a precision of 89.3% in the classification, and the determination of the mg/L of algae in water has an error of 17.95%.


Subject(s)
Eutrophication , Water Quality , Humans , Biodiversity , Infrared Rays , Environmental Monitoring
8.
Sensors (Basel) ; 23(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36904639

ABSTRACT

In this research paper, the spatial distributions of five different services-Voice over Internet Protocol (VoIP), Video Conferencing (VC), Hypertext Transfer Protocol (HTTP), and Electronic Mail-are investigated using three different approaches: circular, random, and uniform approaches. The amount of each service varies from one to another. In certain distinct settings, which are collectively referred to as mixed applications, a variety of services are activated and configured at predetermined percentages. These services run simultaneously. Furthermore, this paper has established a new algorithm to assess both the real-time and best-effort services of the various IEEE 802.11 technologies, describing the best networking architecture as either a Basic Service Set (BSS), an Extended Service Set (ESS), or an Independent Basic Service Set (IBSS). Due to this fact, the purpose of our research is to provide the user or client with an analysis that suggests a suitable technology and network configuration without wasting resources on unnecessary technologies or requiring a complete re-setup. In this context, this paper presents a network prioritization framework for enabling smart environments to determine an appropriate WLAN standard or a combination of standards that best supports a specific set of smart network applications in a specified environment. A network QoS modeling technique for smart services has been derived for assessing best-effort HTTP and FTP, and the real-time performance of VoIP and VC services enabled via IEEE 802.11 protocols in order to discover more optimal network architecture. A number of IEEE 802.11 technologies have been ranked by using the proposed network optimization technique with separate case studies for the circular, random, and uniform geographical distributions of smart services. The performance of the proposed framework is validated using a realistic smart environment simulation setting, considering both real-time and best-effort services as case studies with a range of metrics related to smart environments.

9.
Sensors (Basel) ; 23(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36850468

ABSTRACT

The monitoring of the coastal environment is a crucial factor in ensuring its proper management. Nevertheless, existing monitoring technologies are limited due to their cost, temporal resolution, and maintenance needs. Therefore, limited data are available for coastal environments. In this paper, we present a low-cost multiparametric probe that can be deployed in coastal areas and integrated into a wireless sensor network to send data to a database. The multiparametric probe is composed of physical sensors capable of measuring water temperature, salinity, and total suspended solids (TSS). The node can store the data in an SD card or send them. A real-time clock is used to tag the data and to ensure data gathering every hour, putting the node in deep sleep mode in the meantime. The physical sensors for salinity and TSS are created for this probe and calibrated. The calibration results indicate that no effect of temperature is found for both sensors and no interference of salinity in the measuring of TSS or vice versa. The obtained calibration model for salinity is characterised by a correlation coefficient of 0.9 and a Mean Absolute Error (MAE) of 0.74 g/L. Meanwhile, different calibration models for TSS were obtained based on using different light wavelengths. The best case was using a simple regression model with blue light. The model is characterised by a correlation coefficient of 0.99 and an MAE of 12 mg/L. When both infrared and blue light are used to prevent the effect of different particle sizes, the determination coefficient of 0.98 and an MAE of 57 mg/L characterised the multiple regression model.

10.
Sensors (Basel) ; 22(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36298399

ABSTRACT

The Wireless Medium Access Control (WMAC) protocol functions by handling various data frames in order to forward them to neighbor sensor nodes. Under this circumstance, WMAC policies need secure data communication rules and intrusion detection procedures to safeguard the data from attackers. The existing secure Medium Access Control (MAC) policies provide expected and predictable practices against channel attackers. These security policies can be easily breached by any intelligent attacks or malicious actions. The proposed Wireless Interleaved Honeypot-Framing Model (WIHFM) newly implements distributed honeypot-based security mechanisms in each sensor node to act reactively against various attackers. The proposed WIHFM creates an optimal Wireless Sensor Network (WSN) channel model, Wireless Interleaved Honeypot Frames (WIHFs), secure hash-based random frame-interleaving principles, node-centric honeypot engines, and channel-covering techniques. Compared to various existing MAC security policies, the proposed model transforms unpredictable IHFs into legitimate frame sequences against channel attackers. Additionally, introducing WIHFs is a new-fangled approach for distributed WSNs. The successful development of the proposed WIHFM ensures resilient security standards and neighbor-based intrusion alert procedures for protecting MAC frames. Particularly, the proposed wireless honeypot methodology creates a novel idea of using honeypot frame traps against open wireless channel attacks. The development of a novel wireless honeypot traps deals with various challenges such as distributed honeypot management principles (node-centric honeypot, secretly interleaved-framing principles, and interleaving/de-interleaving procedures), dynamic network backbone management principles (On Demand Acyclic Connectivity model), and distributed attack isolation policies. This effort provides an effective wireless attack-trapping solution in dynamic WSNs. The simulation results show the advantage of the proposed WIHFM over the existing techniques such as Secure Zebra MAC (SZ-MAC), Blockchain-Assisted Secure-Routing Mechanism (BASR), and the Trust-Based Node Evaluation (TBNE) procedure. The experimental section confirms the proposed model attains a 10% to 14% superior performance compared to the existing techniques.


Subject(s)
Computer Communication Networks , Wireless Technology , Algorithms , Computer Simulation , Policy
11.
Sensors (Basel) ; 22(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36081133

ABSTRACT

In recent decades, networked smart devices and cutting-edge technology have been exploited in many applications for the improvement of agriculture. The deployment of smart sensors and intelligent farming techniques supports real-time information gathering for the agriculture sector and decreases the burden on farmers. Many solutions have been presented to automate the agriculture system using IoT networks; however, the identification of redundant data traffic is one of the most significant research problems. Additionally, farmers do not obtain the information they need in time, such as data on water pressure and soil conditions. Thus, these solutions consequently reduce the production rates and increase costs for farmers. Moreover, controlling all agricultural operations in a controlled manner should also be considered in developing intelligent solutions. Therefore, this study proposes a framework for a system that combines fog computing with smart farming and effectively controls network traffic. Firstly, the proposed framework efficiently monitors redundant information and avoids the inefficient use of communication bandwidth. It also controls the number of re-transmissions in the case of malicious actions and efficiently utilizes the network's resources. Second, a trustworthy chain is built between agricultural sensors by utilizing the fog nodes to address security issues and increase reliability by preventing malicious communication. Through extensive simulation-based experiments, the proposed framework revealed an improved performance for energy efficiency, security, and network connectivity in comparison to other related works.


Subject(s)
Agriculture , Wireless Technology , Agriculture/methods , Physical Phenomena , Reproducibility of Results
12.
Sensors (Basel) ; 22(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36081138

ABSTRACT

In-vehicle communication has become an integral part of today's driving environment considering the growing add-ons of sensor-centric communication and computing devices inside a vehicle for a range of purposes including vehicle monitoring, physical wiring reduction, and driving efficiency. However, related literature on cyber security for in-vehicle communication systems is still lacking potential dedicated solutions for in-vehicle cyber risks. Existing solutions are mainly relying on protocol-specific security techniques and lacking an overall security framework for in-vehicle communication. In this context, this paper critically explores the literature on cyber security for in-vehicle communication focusing on technical architecture, methodologies, challenges, and possible solutions. In-vehicle communication network architecture is presented considering key components, interfaces, and related technologies. The protocols for in-vehicle communication have been classified based on their characteristics, and usage type. Security solutions for in-vehicle communication have been critically reviewed considering machine learning, cryptography, and port-centric techniques. A multi-layer secure framework is also developed as a protocol and use case-independent in-vehicle communication solution. Finally, open challenges and future dimensions of research for in-vehicle communication cyber security are highlighted as observations and recommendations.


Subject(s)
Automobile Driving , Computer Security
13.
Sensors (Basel) ; 22(15)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35957292

ABSTRACT

In the last few years, the Internet of things (IoT) has recently gained attention in developing various smart city applications such as smart healthcare, smart supply chain, smart home, smart grid, etc. The existing literature focuses on the smart healthcare system as a public emergency service (PES) to provide timely treatment to the patient. However, little attention is given to a distributed smart fire brigade system as a PES to protect human life and properties from severe fire damage. The traditional PES are developed on a centralised system, which requires high computation and does not ensure timely service fulfilment. Furthermore, these traditional PESs suffer from a lack of trust, transparency, data integrity, and a single point of failure issue. In this context, this paper proposes a Blockchain-Enabled Secure and Trusted (BEST) framework for PES in the smart city environment. The BEST framework focuses on providing a fire brigade service as a PES to the smart home based on IoT device information to protect it from serious fire damage. Further, we used two edge computing servers, an IoT controller and a service controller. The IoT and service controller are used for local storage and to enhance the data processing speed of PES requests and PES fulfilments, respectively. The IoT controller manages an access control list to keep track of registered IoT gateways and their IoT devices, avoiding misguiding the PES department. The service controller utilised the queue model to handle the PES requests based on the minimum service queue length. Further, various smart contracts are designed on the Hyperledger Fabric platform to automatically call a PES either in the presence or absence of the smart-home owner under uncertain environmental conditions. The performance evaluation of the proposed BEST framework indicates the benefits of utilising the distributed environment and the smart contract logic. The various simulation results are evaluated in terms of service queue length, utilisation, actual arrival time, expected arrival time, number of PES departments, number of PES providers, and end-to-end delay. These simulation results show the effectiveness and feasibility of the BEST framework.


Subject(s)
Blockchain , Internet of Things , Cities , Computer Security , Humans , Trust
14.
Sensors (Basel) ; 22(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35897981

ABSTRACT

Recent years have witnessed rapid development and great indignation burgeoning in the unmanned aerial vehicles (UAV) field. This growth of UAV-related research contributes to several challenges, including inter-communication from vehicle to vehicle, transportation coverage, network information gathering, network interworking effectiveness, etc. Due to ease of usage, UAVs have found novel applications in various areas such as agriculture, defence, security, medicine, and observation for traffic-monitoring applications. This paper presents an innovative drone system by designing and developing a blended-wing-body (BWB)-based configuration for next-generation drone use cases. The proposed method has several benefits, including a very low interference drag, evenly distributed load inside the body, and less radar signature compared to the state-of-the-art configurations. During the entire procedure, a standard design approach was followed to optimise the BWB framework for next-generation use cases by considering the typically associated parameters such as vertical take-off and landing and drag and stability of the BWB. Extensive simulation experiments were performed to carry out a performance analysis of the proposed model in a software-based environment. To further confirm that the model design of the BWB-UAV is fit to execute the targeted missions, the real-time working environments were tested through advanced numerical simulation and focused on avoiding cost and unwanted wastages. To enhance the trustworthiness of this said computational fluid dynamics (CFD) analysis, grid convergence test-based validation was also conducted. Two different grid convergence tests were conducted on the induced velocity of the Version I UAV and equivalent stress of the Version II UAV. Finite element analysis-based computations were involved in estimating structural outcomes. Finally, the mesh quality was obtained as 0.984 out of 1. The proposed model is very cost-effective for performing a different kind of manoeuvring activities with the help of its unique design at reasonable mobility speed and hence can be modelled for high-speed-based complex next-generation use cases.


Subject(s)
Aircraft , Unmanned Aerial Devices , Agriculture , Data Collection
15.
Sensors (Basel) ; 22(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35808211

ABSTRACT

An identity management system is essential in any organisation to provide quality services to each authenticated user. The smart healthcare system should use reliable identity management to ensure timely service to authorised users. Traditional healthcare uses a paper-based identity system which is converted into centralised identity management in a smart healthcare system. Centralised identity management has security issues such as denial of service attacks, single-point failure, information breaches of patients, and many privacy issues. Decentralisedidentity management can be a robust solution to these security and privacy issues. We proposed a Self-Sovereign identity management system for the smart healthcare system (SSI-SHS), which manages the identity of each stakeholder, including medical devices or sensors, in a decentralisedmanner in the Internet of Medical Things (IoMT) Environment. The proposed system gives the user complete control of their data at each point. Further, we analysed the proposed identity management system against Allen and Cameron's identity management guidelines. We also present the performance analysis of SSI as compared to the state-of-the-art techniques.


Subject(s)
Internet of Things , Self-Management , Computer Security , Delivery of Health Care/methods , Humans , Privacy
16.
Sensors (Basel) ; 22(10)2022 May 21.
Article in English | MEDLINE | ID: mdl-35632318

ABSTRACT

Clustering is a promising technique for optimizing energy consumption in sensor-enabled Internet of Things (IoT) networks. Uneven distribution of cluster heads (CHs) across the network, repeatedly choosing the same IoT nodes as CHs and identifying cluster heads in the communication range of other CHs are the major problems leading to higher energy consumption in IoT networks. In this paper, using fuzzy logic, bio-inspired chicken swarm optimization (CSO) and a genetic algorithm, an optimal cluster formation is presented as a Hybrid Intelligent Optimization Algorithm (HIOA) to minimize overall energy consumption in an IoT network. In HIOA, the key idea for formation of IoT nodes as clusters depends on finding chromosomes having a minimum value fitness function with relevant network parameters. The fitness function includes minimization of inter- and intra-cluster distance to reduce the interface and minimum energy consumption over communication per round. The hierarchical order classification of CSO utilizes the crossover and mutation operation of the genetic approach to increase the population diversity that ultimately solves the uneven distribution of CHs and turnout to be balanced network load. The proposed HIOA algorithm is simulated over MATLAB2019A and its performance over CSO parameters is analyzed, and it is found that the best fitness value of the proposed algorithm HIOA is obtained though setting up the parameters popsize=60, number of rooster Nr=0.3, number of hen's Nh=0.6 and swarm updating frequency θ=10. Further, comparative results proved that HIOA is more effective than traditional bio-inspired algorithms in terms of node death percentage, average residual energy and network lifetime by 12%, 19% and 23%.


Subject(s)
Internet of Things , Animals , Chickens , Cluster Analysis , Communication , Computer Communication Networks , Female , Male
17.
Sensors (Basel) ; 22(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35336285

ABSTRACT

Wireless networks and the Internet of things (IoT) have proven rapid growth in the development and management of smart environments. These technologies are applied in numerous research fields, such as security surveillance, Internet of vehicles, medical systems, etc. The sensor technologies and IoT devices are cooperative and allow the collection of unpredictable factors from the observing field. However, the constraint resources of distributed battery-powered sensors decrease the energy efficiency of the IoT network and increase the delay in receiving the network data on users' devices. It is observed that many solutions are proposed to overcome the energy deficiency in smart applications; though, due to the mobility of the nodes, lots of communication incurs frequent data discontinuity, compromising the data trust. Therefore, this work introduces a D2D multi-criteria learning algorithm for IoT networks using secured sensors, which aims to improve the data exchange without imposing additional costs and data diverting for mobile sensors. Moreover, it reduces the compromising threats in the presence of anonymous devices and increases the trustworthiness of the IoT-enabled communication system with the support of machine learning. The proposed work was tested and analyzed using broad simulation-based experiments and demonstrated the significantly improved performance of the packet delivery ratio by 17%, packet disturbances by 31%, data delay by 22%, energy consumption by 24%, and computational complexity by 37% for realistic network configurations.


Subject(s)
Internet of Things , Algorithms , Communication , Computer Simulation , Machine Learning
18.
Sensors (Basel) ; 22(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35009896

ABSTRACT

Trilateration-based target localization using received signal strength (RSS) in a wireless sensor network (WSN) generally yields inaccurate location estimates due to high fluctuations in RSS measurements in indoor environments. Improving the localization accuracy in RSS-based systems has long been the focus of a substantial amount of research. This paper proposes two range-free algorithms based on RSS measurements, namely support vector regression (SVR) and SVR + Kalman filter (KF). Unlike trilateration, the proposed SVR-based localization scheme can directly estimate target locations using field measurements without relying on the computation of distances. Unlike other state-of-the-art localization and tracking (L&T) schemes such as the generalized regression neural network (GRNN), SVR localization architecture needs only three RSS measurements to locate a mobile target. Furthermore, the SVR based localization scheme was fused with a KF in order to gain further refinement in target location estimates. Rigorous simulations were carried out to test the localization efficacy of the proposed algorithms for noisy radio frequency (RF) channels and a dynamic target motion model. Benefiting from the good generalization ability of SVR, simulation results showed that the presented SVR-based localization algorithms demonstrate superior performance compared to trilateration- and GRNN-based localization schemes in terms of indoor localization performance.


Subject(s)
Algorithms , Neural Networks, Computer , Computer Simulation , Motion , Radio Waves
19.
Sensors (Basel) ; 21(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34770416

ABSTRACT

In modern years, network edges have been explored by many applications to lower communication and management costs. They are also integrated with the internet of things (IoT) to achieve network design, in terms of scalability and heterogeneous services for multimedia applications. Many proposed solutions are performing a vital role in the development of robust protocols and reducing the response time for critical networks. However, most of them are not able to support the forwarding processes of high multimedia traffic under dynamic characteristics with constraint bandwidth. Moreover, they increase the rate of data loss in an uncertain environment and compromise network performance by increasing delivery delay. Therefore, this paper presents an optimization model with mobile edges for multimedia sensors using artificial intelligence of things, which aims to maintain the process of real-time data collection with low consumption of resources. Moreover, it improves the unpredictability of network communication with the integration of software-defined networks (SDN) and mobile edges. Firstly, it utilizes the artificial intelligence of things (AIoT), forming the multi-hop network and guaranteed the primary services for constraints network with stable resources management. Secondly, the SDN performs direct association with mobile edges to support the load balancing for multimedia sensors and centralized the management. Finally, multimedia traffic is heading towards applications in an unchanged form and without negotiating using the sharing of subkeys. The experimental results demonstrated its effectiveness for delivery rate by an average of 35%, processing delay by an average of 29%, network overheads by an average of 41%, packet drop ratio by an average of 39%, and packet retransmission by an average of 34% against existing solutions.


Subject(s)
Computer Communication Networks , Multimedia , Algorithms , Artificial Intelligence , Software
20.
Sensors (Basel) ; 21(21)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34770549

ABSTRACT

The use of precision agriculture is becoming more and more necessary to provide food for the world's growing population, as well as to reduce environmental impact and enhance the usage of limited natural resources. One of the main drawbacks that hinder the use of precision agriculture is the cost of technological immersion in the sector. For farmers, it is necessary to provide low-cost and robust systems as well as reliability. Toward this end, this paper presents a wireless sensor network of low-cost sensor nodes for soil moisture that can help farmers optimize the irrigation processes in precision agriculture. Each wireless node is composed of four soil moisture sensors that are able to measure the moisture at different depths. Each sensor is composed of two coils wound onto a plastic pipe. The sensor operation is based on mutual induction between coils that allow monitoring the percentage of water content in the soil. Several prototypes with different features have been tested. The prototype that has offered better results has a winding ratio of 1:2 with 15 and 30 spires working at 93 kHz. We also have developed a specific communication protocol to improve the performance of the whole system. Finally, the wireless network was tested, in a real, cultivated plot of citrus trees, in terms of coverage and received signal strength indicator (RSSI) to check losses due to vegetation.


Subject(s)
Agriculture , Soil , Computer Communication Networks , Reproducibility of Results , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...