Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
NPJ Sci Food ; 8(1): 8, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291073

ABSTRACT

Epidemiological studies have shown associations between whole-grain intake and lowered disease risk. A sufficient level of whole-grain intake to reach the health benefits has not been established, and there is limited knowledge about the impact of whole-grain intake on metabolite levels. In this clinical intervention study, we aimed to identify plasma and urine metabolites associated with two different intake levels of whole-grain wheat and rye and to correlate them with clinical plasma biomarkers. Healthy volunteers (N = 68) were divided into two groups receiving either whole-grain wheat or whole-grain rye in two four-week interventions with 48 and 96 g/d of whole grains consumed. The metabolomics of the plasma samples was performed with UPLC-QTOF-MS. Plasma alkylresorcinols were quantified with GC-MS and plasma and urinary mammalian lignans with HPLC-ECD. The high-dose intervention impacted the metabolite profile, including microbial metabolites, more in the rye-enriched diet compared with wheat. Among the increased metabolites were alkylresorcinol glucuronides, sinapyl alcohol, and pipecolic acid betaine, while the decreased metabolites included acylcarnitines and ether lipids. Plasma alkylresorcinols, urinary enterolactone, and total mammalian lignans reflected the study diets in a dose-dependent manner. Several key metabolites linked with whole-grain consumption and gut microbial metabolism increased in a linear manner between the two interventions. The results reveal that an increase in whole-grain intake, particularly rye, is strongly reflected in the metabolite profile, is correlated with clinical variables, and suggests that a diet rich in whole grains promotes the growth and/or metabolism of microbes producing potentially beneficial microbial metabolites.

2.
Front Nutr ; 9: 880770, 2022.
Article in English | MEDLINE | ID: mdl-35757242

ABSTRACT

Background: Diet is one of the most important modifiable lifestyle factors in human health and in chronic disease prevention. Thus, accurate dietary assessment is essential for reliably evaluating adherence to healthy habits. Objectives: The aim of this study was to identify urinary metabolites that could serve as robust biomarkers of diet quality, as assessed through the Alternative Healthy Eating Index (AHEI-2010). Design: We set up two-center samples of 160 healthy volunteers, aged between 25 and 50, living as a couple or family, with repeated urine sampling and dietary assessment at baseline, and 6 and 12 months over a year. Urine samples were subjected to large-scale metabolomics analysis for comprehensive quantitative characterization of the food-related metabolome. Then, lasso regularized regression analysis and limma univariate analysis were applied to identify those metabolites associated with the AHEI-2010, and to investigate the reproducibility of these associations over time. Results: Several polyphenol microbial metabolites were found to be positively associated with the AHEI-2010 score; urinary enterolactone glucuronide showed a reproducible association at the three study time points [false discovery rate (FDR): 0.016, 0.014, 0.016]. Furthermore, other associations were found between the AHEI-2010 and various metabolites related to the intake of coffee, red meat and fish, whereas other polyphenol phase II metabolites were associated with higher AHEI-2010 scores at one of the three time points investigated (FDR < 0.05 or ß ≠ 0). Conclusion: We have demonstrated that urinary metabolites, and particularly microbiota-derived metabolites, could serve as reliable indicators of adherence to healthy dietary habits. Clinical Trail Registration: www.ClinicalTrials.gov, Identifier: NCT03169088.

3.
Front Public Health ; 9: 670304, 2021.
Article in English | MEDLINE | ID: mdl-34414154

ABSTRACT

Background: Preconception lifestyle interventions appear promising to reduce pregnancy complications, prevent adult cardiometabolic diseases, and prevent childhood obesity. These interventions have almost exclusively been studied in populations of obese infertile women. The development of preconception lifestyle interventions targeting a broader population of overweight and obese women without a history infertility and their partners is needed. Methods: This study is a multicenter open label parallel group randomized controlled trial. Sixty-eight non-infertile women with overweight or obesity in the preconception period and their partners will be recruited from the Sherbrooke and Quebec City regions. The couples will be randomized in a 1:1 ratio to receive the Healthy for my Baby intervention or standard care in the preconception period and pregnancy. Women and their partners will be invited to take part in this lifestyle intervention which includes motivational interviews and daily self-monitoring of lifestyle goals through a mobile phone application. The primary endpoint of this study is the diet quality of women during the preconception period, which will be evaluated using the C-HEI 2007 score at baseline, 2, 4- and 6-months following study enrolment. Women's dietary quality will also be evaluated through the measure of urinary biomarkers of habitual dietary intake at baseline and 2 months in preconception, and 24-26 weeks in pregnancy. Additional indicators of women's lifestyle as well as anthropometric measures will be documented in preconception and pregnancy. For the pregnancy period, the main secondary endpoint is the pattern of gestational weight gain. Pregnancy and neonatal complications will also be evaluated. For partners, diet quality, other lifestyle habits, and anthropometric measures will be documented in the preconception and pregnancy periods. Discussion: This study will evaluate the effectiveness of a low-cost intervention designed to improve diet and other lifestyle characteristics of women in the preconception period who are overweight or obese. If the Healthy for my Baby intervention is efficacious regarding dietary measures, larger trials will be needed to evaluate the impact of this intervention on the rates of pregnancy complications, childhood obesity, and adult cardiometabolic disease. Clinical Trial Registration:clinicaltrials.gov (NCT04242069).


Subject(s)
Gestational Weight Gain , Overweight , Adult , Female , Humans , Life Style , Male , Multicenter Studies as Topic , Overweight/prevention & control , Pregnancy , Randomized Controlled Trials as Topic
4.
Front Nutr ; 7: 602515, 2020.
Article in English | MEDLINE | ID: mdl-33344495

ABSTRACT

Improvement of diet at the population level is a cornerstone of national and international strategies for reducing chronic disease burden. A critical challenge in generating robust data on habitual dietary intake is accurate exposure assessment. Self-reporting instruments (e.g., food frequency questionnaires, dietary recall) are subject to reporting bias and serving size perceptions, while weighed dietary assessments are unfeasible in large-scale studies. However, secondary metabolites derived from individual foods/food groups and present in urine provide an opportunity to develop potential biomarkers of food intake (BFIs). Habitual dietary intake assessment in population surveys using biomarkers presents several challenges, including the need to develop affordable biofluid collection methods, acceptable to participants that allow collection of informative samples. Monitoring diet comprehensively using biomarkers requires analytical methods to quantify the structurally diverse mixture of target biomarkers, at a range of concentrations within urine. The present article provides a perspective on the challenges associated with the development of urine biomarker technology for monitoring diet exposure in free-living individuals with a view to its future deployment in "real world" situations. An observational study (n = 95), as part of a national survey on eating habits, provided an opportunity to explore biomarker measurement in a free-living population. In a second food intervention study (n = 15), individuals consumed a wide range of foods as a series of menus designed specifically to achieve exposure reflecting a diversity of foods commonly consumed in the UK, emulating normal eating patterns. First Morning Void urines were shown to be suitable samples for biomarker measurement. Triple quadrupole mass spectrometry, coupled with liquid chromatography, was used to assess simultaneously the behavior of a panel of 54 potential BFIs. This panel of chemically diverse biomarkers, reporting intake of a wide range of commonly-consumed foods, can be extended successfully as new biomarker leads are discovered. Towards validation, we demonstrate excellent discrimination of eating patterns and quantitative relationships between biomarker concentrations in urine and the intake of several foods. In conclusion, we believe that the integration of information from BFI technology and dietary self-reporting tools will expedite research on the complex interactions between dietary choices and health.

5.
Front Nutr ; 7: 561010, 2020.
Article in English | MEDLINE | ID: mdl-33195362

ABSTRACT

Poor dietary choices are major risk factors for obesity and non-communicable diseases, which places an increasing burden on healthcare systems worldwide. To monitor the effectiveness of healthy eating guidelines and strategies, there is a need for objective measures of dietary intake in community settings. Metabolites derived from specific foods present in urine samples can provide objective biomarkers of food intake (BFIs). Whilst the majority of biomarker discovery/validation studies have investigated potential biomarkers for single foods only, this study considered the whole diet by using menus that delivered a wide range of foods in meals that emulated conventional UK eating patterns. Fifty-one healthy participants (range 19-77 years; 57% female) followed a uniquely designed, randomized controlled dietary intervention, and provided spot urine samples suitable for discovery of BFIs within a real-world context. Free-living participants prepared and consumed all foods and drinks in their own homes and were asked to follow the protocols for meal consumption and home urine sample collection. This study also assessed the robustness, and impact on data quality, of a minimally invasive urine collection protocol. Overall the study design was well-accepted by participants and concluded successfully without any drop outs. Compliance for urine collection, adherence to menu plans, and observance of recommended meal timings, was shown to be very high. Metabolome analysis using mass spectrometry coupled with data mining demonstrated that the study protocol was well-suited for BFI discovery and validation. Novel, putative biomarkers for an extended range of foods were identified including legumes, curry, strongly-heated products, and artificially sweetened, low calorie beverages. In conclusion, aspects of this study design would help to overcome several current challenges in the development of BFI technology. One specific attribute was the examination of BFI generalizability across related food groups and across different preparations and cooking methods of foods. Furthermore, the collection of urine samples at multiple time points helped to determine which spot sample was optimal for identification and validation of BFIs in free-living individuals. A further valuable design feature centered on the comprehensiveness of the menu design which allowed the testing of biomarker specificity within a biobank of urine samples.

6.
Mol Nutr Food Res ; 64(20): e2000515, 2020 10.
Article in English | MEDLINE | ID: mdl-32918337

ABSTRACT

SCOPE: Metabolites derived from specific foods present in urine samples can provide objective biomarkers of food intake (BFIs). This study investigated the possibility that calystegines (a class of iminosugars) may provide BIFs for potato (Solanum tuberosum L.) product exposure. METHODS AND RESULTS: Calystegine content is examined in published data covering a wide range of potato cultivars. Rapid methods are developed for the quantification of calystegines in cooked potato products and human urine using triple quadrupole mass spectrometry. The potential of calystegines as BFIs for potato consumption is assessed in a controlled food intervention study in the United Kingdom and validated in an epidemiological study in Portugal. Calystegine concentrations are reproducibly above the quantification limit in first morning void urines the day after potato consumption, showing a good dose-response relationship, particularly for calystegine A3 . The design of the controlled intervention mimicks exposure to a typical UK diet and showed that neither differences in preparation/cooking method or influence of other foods in the diet has significant impact on biomarker performance. Calystegine biomarkers also perform well in the independent validation study. CONCLUSION: It is concluded that calystegines have many of the characteristics needed to be considered as specific BFIs for potato product intake.


Subject(s)
Biomarkers/urine , Solanum tuberosum/chemistry , Tropanes/urine , Adult , Chromatography, Liquid/methods , Female , Food Analysis/methods , Humans , Isomerism , Male , Middle Aged , Nortropanes/urine , Nutrition Surveys , Sensitivity and Specificity , Solanaceous Alkaloids/urine , Solanum tuberosum/genetics , Tandem Mass Spectrometry/methods , Tropanes/analysis , Young Adult
7.
Mol Nutr Food Res ; 64(20): e2000517, 2020 10.
Article in English | MEDLINE | ID: mdl-32926540

ABSTRACT

SCOPE: Metabolites derived from individual foods found in human biofluids after consumption could provide objective measures of dietary intake. For comprehensive dietary assessment, quantification methods would need to manage the structurally diverse mixture of target metabolites present at wide concentration ranges. METHODS AND RESULTS: A strategy for selection of candidate dietary exposure biomarkers is developed. An analytical method for 62 food biomarkers is validated by extensive analysis of chromatographic and ionization behavior characteristics using triple quadrupole mass spectrometry. Urine samples from two food intervention studies are used: a controlled, inpatient study (n = 19) and a free-living study where individuals (n = 15) are provided with food as a series of menu plans. As proof-of-principle, it is demonstrated that the biomarker panel could discriminate between menu plans by detecting distinctive changes in the concentration in urine of targeted metabolites. Quantitative relationships between four biomarker concentrations in urine and dietary intake are shown. CONCLUSION: Design concepts for an analytical strategy are demonstrated, allowing simultaneous quantification of a comprehensive panel of chemically-diverse biomarkers of a wide range of commonly-consumed foods. It is proposed that integration of self-reported dietary recording tools with biomarker approaches will provide more robust assessment of dietary exposure.


Subject(s)
Biomarkers/urine , Diet , Urinalysis/standards , Adult , Aged , Beverages , Chromatography, Reverse-Phase , Fruit , Humans , Hydrophobic and Hydrophilic Interactions , Middle Aged , Proof of Concept Study , Urinalysis/methods , Vegetables , Young Adult
8.
Public Health Nutr ; 23(17): 3093-3103, 2020 12.
Article in English | MEDLINE | ID: mdl-32611472

ABSTRACT

OBJECTIVE: The aim of the current study was to evaluate the accuracy of the new software eAT24 used to assess dietary intake in the National Food, Nutrition and Physical Activity Survey (IAN-AF) against urinary biomarkers: N (nitrogen), K (potassium) and Na (sodium). DESIGN: We conducted a cross-sectional study. Two non-consecutive 24-h dietary recalls (24-HDR) were applied, and a 24-h urine sample was collected. We examined differences between estimates from dietary and urine measures, Pearson correlation coefficients were calculated and the Bland-Altman plots were drawn. Multiple linear regression was used to evaluate the factors associated with the difference between estimates. SETTING: Sub-sample from the Portuguese IAN-AF sampling frame. PARTICIPANTS: Ninety-five adults (men and women) aged 18-84 years. RESULTS: The estimated intake calculated using the dietary recall data was lower than that estimated from urinary excretion for the three biomarkers studied (protein 94·3 v. 100·4 g/d, K 3212 v. 3416 mg/d and Na 3489 v. 4003 mg/d). Considering 2 d of recall, the deattenuated correlation coefficients were 0·33, 0·64 and 0·26 for protein, K and Na, respectively. For protein, differences between dietary and urinary estimates varied according to BMI (ß = -1·96, P = 0·017). The energy intake and 24-h urine volume were significantly associated with the difference between estimates for protein (ß = 0·03, P < 0·001 and ß = -0·02, P = 0·002, respectively), K (ß = 0·71, P < 0·001 and ß = -0·42, P = 0·040, respectively) and Na (ß = 1·55, P < 0·001 and ß = -0·81, P = 0·011, respectively). CONCLUSIONS: The new software eAT24 performed well in estimating protein and K intakes, but lesser so in estimating Na intake, using two non-consecutive 24-HDR.


Subject(s)
Diet , Software/standards , Adult , Cross-Sectional Studies , Eating , Female , Humans , Male , Portugal , Sodium, Dietary
9.
Public Health Nutr ; 23(17): 3081-3092, 2020 12.
Article in English | MEDLINE | ID: mdl-32524939

ABSTRACT

OBJECTIVE: Obtaining objective, dietary exposure information from individuals is challenging because of the complexity of food consumption patterns and the limitations of self-reporting tools (e.g., FFQ and diet diaries). This hinders research efforts to associate intakes of specific foods or eating patterns with population health outcomes. DESIGN: Dietary exposure can be assessed by the measurement of food-derived chemicals in urine samples. We aimed to develop methodologies for urine collection that minimised impact on the day-to-day activities of participants but also yielded samples that were data-rich in terms of targeted biomarker measurements. SETTING: Urine collection methodologies were developed within home settings. PARTICIPANTS: Different cohorts of free-living volunteers. RESULTS: Home collection of urine samples using vacuum transfer technology was deemed highly acceptable by volunteers. Statistical analysis of both metabolome and selected dietary exposure biomarkers in spot urine collected and stored using this method showed that they were compositionally similar to urine collected using a standard method with immediate sample freezing. Even without chemical preservatives, samples can be stored under different temperature regimes without any significant impact on the overall urine composition or concentration of forty-six exemplar dietary exposure biomarkers. Importantly, the samples could be posted directly to analytical facilities, without the need for refrigerated transport and involvement of clinical professionals. CONCLUSIONS: This urine sampling methodology appears to be suitable for routine use and may provide a scalable, cost-effective means to collect urine samples and to assess diet in epidemiological studies.


Subject(s)
Dietary Exposure , Urinalysis , Biomarkers/urine , Diet , Dietary Exposure/analysis , Humans , Metabolome , Technology
10.
Mol Nutr Food Res ; 63(14): e1900062, 2019 07.
Article in English | MEDLINE | ID: mdl-31157514

ABSTRACT

SCOPE: Dietary choices modulate the risk of chronic diseases and improving diet is a central component of public health strategies. Food-derived metabolites present in urine could provide objective biomarkers of dietary exposure. To assist biomarker validation, this work aims to develop a food intervention strategy mimicking a typical annual diet over a short period of time and assesses urine sampling protocols potentially suitable for future deployment of biomarker technology in free-living populations. METHODS AND RESULTS: Six different menu plans comprehensively represent a typical UK annual diet that is split into two dietary experimental periods. Free-living adult participants (n = 15 and n = 36, respectively) are provided with all their food, as a series of menu plans, over a period of three consecutive days. Multiple spot urine samples are collected and stored at home. CONCLUSION: A successful food exposure strategy is established following a conventional UK eating pattern, which is suitable for biomarker validation in free-living individuals. The urine sampling procedure is acceptable for volunteers and delivered samples suitable for biomarker quantification. The study design provides scope for validation of existing biomarker candidates and potentially for discovery of new biomarker leads, and should help inform the future deployment of biomarker technology for habitual dietary exposure measurement.


Subject(s)
Biomarkers/urine , Diet , Urine Specimen Collection/methods , Acidosis , Adult , Aged , Female , Food , Humans , Male , Middle Aged , United Kingdom , Young Adult
11.
J Nutr ; 149(10): 1692-1700, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31240300

ABSTRACT

BACKGROUND: Measurement of multiple food intake exposure biomarkers in urine may offer an objective method for monitoring diet. The potential of spot and cumulative urine samples that have reduced burden on participants as replacements for 24-h urine collections has not been evaluated. OBJECTIVE: The aim of this study was to determine the utility of spot and cumulative urine samples for classifying the metabolic profiles of people according to dietary intake when compared with 24-h urine collections in a controlled dietary intervention study. METHODS: Nineteen healthy individuals (10 male, 9 female, aged 21-65 y, BMI 20-35 kg/m2) each consumed 4 distinctly different diets, each for 1 wk. Spot urine samples were collected ∼2 h post meals on 3 intervention days/wk. Cumulative urine samples were collected daily over 3 separate temporal periods. A 24-h urine collection was created by combining the 3 cumulative urine samples. Urine samples were analyzed with metabolite fingerprinting by both high-resolution flow infusion electrospray mass spectrometry (FIE-HRMS) and proton nuclear magnetic resonance spectroscopy (1H-NMR). Concentrations of dietary intake biomarkers were measured with liquid chromatography triple quadrupole mass spectrometry and by integration of 1H-NMR data. RESULTS: Cross-validation modeling with 1H-NMR and FIE-HRMS data demonstrated the power of spot and cumulative urine samples in predicting dietary patterns in 24-h urine collections. Particularly, there was no significant loss of information when post-dinner (PD) spot or overnight cumulative samples were substituted for 24-h urine collections (classification accuracies of 0.891 and 0.938, respectively). Quantitative analysis of urine samples also demonstrated the relation between PD spot samples and 24-h urines for dietary exposure biomarkers. CONCLUSIONS: We conclude that PD spot urine samples are suitable replacements for 24-h urine collections. Alternatively, cumulative samples collected overnight predict similarly to 24-h urine samples and have a lower collection burden for participants.


Subject(s)
Dietary Exposure , Urine Specimen Collection/methods , Adult , Aged , Biomarkers/urine , Diet , Female , Humans , Male , Metabolome , Middle Aged , Reproducibility of Results , Young Adult
12.
Dermatol Surg ; 44(11): 1427-1436, 2018 11.
Article in English | MEDLINE | ID: mdl-30020097

ABSTRACT

BACKGROUND AND OBJECTIVE: Epidermal preservation is essential during laser treatment for vascular, hair, and benign pigment dyschromias. Epidermal tolerance is determined by epidermal melanin content, fluence, pulse width, wavelength, skin cooling, and spot size. The authors' objective was to determine the maximum epidermal tolerance for the long-pulse alexandrite 755 nm and the long-pulse neodymium-doped yttrium aluminum garnet (Nd:YAG) 1064-nm lasers for varying epidermal melanin content. MATERIALS AND METHODS: Skin melanin measurements were performed at the test sites with a melanin reader, and 0.5 to 1 second of refrigerated air precooled the skin. Then, alexandrite and Nd:YAG laser test spots of 5 to 18 mm were delivered in a series of ascending fluences using 5-, 20-, and 50-ms pulse widths. Skin response at 24 to 48 and 96 hours was scored from 0 to 15 varying from "no reaction" to "severe scabbing." RESULTS: Alexandrite laser, mean threshold fluences increased by a factor of 1.2 increasing from 5 to 20 ms, and by a factor of 1.4 increasing from 5 to 50 ms, among subjects with a melanin index (MI) from 9 to 25 (Fitzpatrick skin phototype I-III). The Nd:YAG fluence to reach epidermal tolerance was 6X the fluence with the alexandrite laser for the same MI in subjects with MI 26 to 35. CONCLUSION: Epidermal melanin measurements are quantitative and objective, therefore, improving treatment setting determination by decreasing the risk of overtreatment or undertreatment.


Subject(s)
Epidermis/metabolism , Epidermis/radiation effects , Melanins/metabolism , Melanins/radiation effects , Pigmentation Disorders/radiotherapy , Adult , Female , Humans , Lasers, Solid-State , Male , Middle Aged
13.
Proc Nutr Soc ; 76(3): 308-315, 2017 08.
Article in English | MEDLINE | ID: mdl-28347371

ABSTRACT

A high intake of fruit and vegetables (FV) has been associated with reduced risk of a number of chronic diseases, including CVD. The aim of this review is to describe the potential use of biomarkers to assess FV intake. Traditional methods of assessing FV intake have limitations, and this is likely to impact on observed associations with disease outcomes and markers of disease risk. Nutritional biomarkers may offer a more objective and reliable method of assessing dietary FV intake. Some single blood biomarkers, such as plasma vitamin C and serum carotenoids, are well established as indicators of FV intake. Combining potential biomarkers of intake may more accurately predict overall FV intake within intervention studies than the use of any single biomarker. Another promising approach is metabolomic analysis of biological fluids using untargeted approaches to identify potential new biomarkers of FV intake. Using biomarkers to measure FV intake may improve the accuracy of dietary assessment.


Subject(s)
Diet, Healthy , Fruit , Patient Compliance , Vegetables , Biomarkers/blood , Biomarkers/metabolism , Biomarkers/urine , Biomedical Research/methods , Biomedical Research/trends , Congresses as Topic , Dietetics/methods , Dietetics/trends , Humans , Metabolomics/methods , Metabolomics/trends , Nutrition Assessment , Nutritional Sciences/methods , Nutritional Sciences/trends , Societies, Scientific
14.
JAMA Dermatol ; 153(3): 296-303, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28097368

ABSTRACT

Importance: Skin cancer is the most common malignancy occurring after organ transplantation. Although previous research has reported an increased risk of skin cancer in solid organ transplant recipients (OTRs), no study has estimated the posttransplant population-based incidence in the United States. Objective: To determine the incidence and evaluate the risk factors for posttransplant skin cancer, including squamous cell carcinoma (SCC), melanoma (MM), and Merkel cell carcinoma (MCC) in a cohort of US OTRs receiving a primary organ transplant in 2003 or 2008. Design, Setting, and Participants: This multicenter retrospective cohort study examined 10 649 adult recipients of a primary transplant performed at 26 centers across the United States in the Transplant Skin Cancer Network during 1 of 2 calendar years (either 2003 or 2008) identified through the Organ Procurement and Transplantation Network (OPTN) database. Recipients of all organs except intestine were included, and the follow-up periods were 5 and 10 years. Main Outcomes and Measures: Incident skin cancer was determined through detailed medical record review. Data on predictors were obtained from the OPTN database. The incidence rates for posttransplant skin cancer overall and for SCC, MM, and MCC were calculated per 100 000 person-years. Potential risk factors for posttransplant skin cancer were tested using multivariate Cox regression analysis to yield adjusted hazard ratios (HR). Results: Overall, 10 649 organ transplant recipients (mean [SD] age, 51 [12] years; 3873 women [36%] and 6776 men [64%]) contributed 59 923 years of follow-up. The incidence rates for posttransplant skin cancer was 1437 per 100 000 person-years. Specific subtype rates for SCC, MM, and MCC were 812, 75, and 2 per 100 000 person-years, respectively. Statistically significant risk factors for posttransplant skin cancer included pretransplant skin cancer (HR, 4.69; 95% CI, 3.26-6.73), male sex (HR, 1.56; 95% CI, 1.34-1.81), white race (HR, 9.04; 95% CI, 6.20-13.18), age at transplant 50 years or older (HR, 2.77; 95% CI, 2.20-3.48), and being transplanted in 2008 vs 2003 (HR, 1.53; 95% CI, 1.22-1.94). Conclusions and Relevance: Posttransplant skin cancer is common, with elevated risk imparted by increased age, white race, male sex, and thoracic organ transplantation. A temporal cohort effect was present. Understanding the risk factors and trends in posttransplant skin cancer is fundamental to targeted screening and prevention in this population.


Subject(s)
Carcinoma, Merkel Cell/epidemiology , Carcinoma, Squamous Cell/epidemiology , Melanoma/epidemiology , Organ Transplantation/statistics & numerical data , Skin Neoplasms/epidemiology , Adolescent , Adult , Age Factors , Aged , Carcinoma, Merkel Cell/ethnology , Carcinoma, Squamous Cell/ethnology , Female , Follow-Up Studies , Humans , Incidence , Male , Melanoma/ethnology , Middle Aged , Retrospective Studies , Risk Factors , Sex Factors , Skin Neoplasms/ethnology , United States/epidemiology , White People/statistics & numerical data , Young Adult
15.
Metabolomics ; 13(2): 15, 2017.
Article in English | MEDLINE | ID: mdl-28111530

ABSTRACT

INTRODUCTION AND OBJECTIVES: The purpose of this study was to use high accurate mass metabolomic profiling to investigate differences within a phenotypically diverse canine population, with breed-related morphological, physiological and behavioural differences. Previously, using a broad metabolite fingerprinting approach, lipids appear to dominate inter- and intra- breed discrimination. The purpose here was to use Ultra High Performance Liquid Chromatography-High Resolution Mass Spectrometry (UHPLC-HRMS) to identify in more detail, inter-breed signatures in plasma lipidomic profiles of home-based, client-owned dogs maintained on different diets and fed according to their owners' feeding regimens. METHODS: Nine dog breeds were recruited in this study (Beagle, Chihuahua, Cocker Spaniel, Dachshund, Golden Retriever, Greyhound, German Shepherd, Labrador Retriever and Maltese: 7-12 dogs per breed). Metabolite profiling on a MTBE lipid extract of fasted plasma was performed using UHPLC-HRMS. RESULTS: Multivariate modelling and classification indicated that the main source of lipidome variance was between the three breeds Chihuahua, Dachshund and Greyhound and the other six breeds, however some intra-breed variance was evident in Labrador Retrievers. Metabolites associated with dietary intake impacted on breed-associated variance and following filtering of these signals out of the data-set unique inter-breed lipidome differences for Chihuahua, Golden Retriever and Greyhound were identified. CONCLUSION: By using a phenotypically diverse home-based canine population, we were able to show that high accurate mass lipidomics can enable identification of metabolites in the first pass plasma profile, capturing distinct metabolomic variability associated with genetic differences, despite environmental and dietary variability.

16.
Metabolomics ; 12: 72, 2016.
Article in English | MEDLINE | ID: mdl-27065761

ABSTRACT

INTRODUCTION: Dog breeds are a consequence of artificial selection for specific attributes. These closed genetic populations have metabolic and physiological characteristics that may be revealed by metabolomic analysis. OBJECTIVES: To identify and characterise the drivers of metabolic differences in the fasted plasma metabolome and then determine metabolites differentiating breeds. METHODS: Fasted plasma samples were collected from dogs maintained under two environmental conditions (controlled and client-owned at home). The former (n = 33) consisted of three breeds (Labrador Retriever, Cocker Spaniel and Miniature Schnauzer) fed a single diet batch, the latter (n = 96), client-owned dogs consisted of 9 breeds (Beagle, Chihuahua, Cocker Spaniel, Dachshund, Golden Retriever, Greyhound, German Shepherd, Labrador Retriever and Maltese) consuming various diets under differing feeding regimens. Triplicate samples were taken from Beagle (n = 10) and Labrador Retriever (n = 9) over 3 months. Non-targeted metabolite fingerprinting was performed using flow infusion electrospray-ionization mass spectrometry which was coupled with multivariate data analysis. Metadata factors including age, gender, sexual status, weight, diet and breed were investigated. RESULTS: Breed differences were identified in the plasma metabolome of dogs housed in a controlled environment. Triplicate samples from two breeds identified intra-individual variability, yet breed separation was still observed. The main drivers of variance in dogs maintained in the home environment were associated with breed and gender. Furthermore, metabolite signals were identified that discriminated between Labrador Retriever and Cocker Spaniels in both environments. CONCLUSION: Metabolite fingerprinting of plasma samples can be used to investigate breed differences in client-owned dogs, despite added variance of diet, sexual status and environment.

18.
J Drugs Dermatol ; 15(11): 1459-1460, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-28095563

ABSTRACT

Dihydroxyacetone (DHA) is a popular ingredient in sunless tanner and lotions. We sought to measure the absorption spectrum of hu- man skin after application of DHA. A male in his 30's applied DHA to one underarm once daily for seven days. Re ectance spectropho- tometry was performed on the treated and untreated side. The area treated with DHA revealed increased absorption in the 400-700 nm range. Compared to normal skin, the absorption spectrum of human skin after application of DHA is altered from 400-700 nm. Care should be taking with using lasers in these wavelengths on skin treated with DHA. J Drugs Dermatol. 2016;15(11):1459-1460..


Subject(s)
Dihydroxyacetone/administration & dosage , Skin Absorption/drug effects , Skin Cream/administration & dosage , Skin Pigmentation/drug effects , Spectrophotometry/methods , Administration, Topical , Adult , Cosmetics/administration & dosage , Humans , Male , Skin/drug effects , Skin Absorption/physiology , Skin Pigmentation/physiology
19.
Mol Nutr Food Res ; 60(2): 444-57, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26372606

ABSTRACT

SCOPE: The intake of sucrose is of public health concern but limited information is available on the metabolic effects of short-term exposure. Our aim was to use metabolomics to investigate the metabolic impact of acute sucrose exposure. METHODS AND RESULTS: We performed a randomized, parallel, single-dose feeding study on healthy females (n = 90, aged 29.9 ± 4.7 years, BMI 23.3 ± 2.5 kg/m(2) ) consuming either 0, 50, or 100 g sucrose in 500 mL water. Blood and urine samples were taken before and 24 h post sucrose intake. Urine and plasma samples underwent detailed metabolite profiling analysis using established protocols. Flow-injection electrospray MS fingerprinting analysis showed that 3 h after intake was the most informative time point in urine and plasma and out of 120 explanatory signals, highlighted 16 major metabolite signals in urine and 25 metabolite signals in plasma that were discriminatory and correlated with sucrose intake over time. The main confirmed metabolites positively correlated with intake were sucrose, fructose, and erythronic acid, while those negatively correlating with intake included fatty acids and derivatives, acyl-carnitines, and ketone bodies. GC-TOF-MS profiling analysis confirmed the fingerprinting data. CONCLUSION: Acute exposure to sucrose identified a number of metabolites correlated with sucrose intake and several compounds attributed to metabolic fasting.


Subject(s)
Biomarkers/blood , Biomarkers/urine , Dietary Sucrose/administration & dosage , Metabolome , Adult , Butyrates/blood , Dietary Sucrose/adverse effects , Fasting , Female , Fructose/blood , Gas Chromatography-Mass Spectrometry , Humans , Metabolomics/methods , Sucrose/blood
20.
Lasers Surg Med ; 47(5): 386-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25994768

ABSTRACT

BACKGROUND: Cutaneous siderosis is accumulation of iron in the dermis and the subcutaneous tissue secondary to extravasation of an intramuscular or intravascular iron injection. It presents as varying shades of brown macules with no distinct contours. The hyperpigmentation is permanent without treatment. OBJECTIVE: Q-switched lasers have been used effectively to treat lentigines and tattoos however, there is little data on the treatment of cutaneous siderosis with lasers. Our objective was to effectively treat cutaneous siderosis with a Q-switched alexandrite laser. RESULTS: A 50-year-old female had received nine injections of intramuscular iron dextran, one injection every 2 weeks alternating right buttock and left buttock over the course of 5 months. A couple of weeks after her 9th injection which was on the left, she noted brown hyperpigmentation in the injection area with the left worse than the right. She waited 3 months for the hyperpigmentation to self-resolve before presenting in our clinic. We utilized the Q-switched alexandrite laser to treat the patient with a test spot. One week later, there was nice partial clearance from the test spot so we commenced full treatment of the hyperpigmentation. There was significant improvement after the first treatment and she has been treated 4 times with continued improvement over the past 2 months. CONCLUSION: The Q-switched alexandrite laser is a useful tool in the treatment of cutaneous siderosis secondary to iron injection.


Subject(s)
Hematinics/adverse effects , Hyperpigmentation/surgery , Iron-Dextran Complex/adverse effects , Laser Therapy , Lasers, Solid-State/therapeutic use , Siderosis/surgery , Anemia, Iron-Deficiency/drug therapy , Female , Hematinics/administration & dosage , Humans , Hyperpigmentation/chemically induced , Injections, Intramuscular , Iron-Dextran Complex/administration & dosage , Middle Aged , Siderosis/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...