Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Harmful Algae ; 137: 102654, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39003020

ABSTRACT

Microbial blooms have been reported in the First Generation Magnox Storage Pond at the Sellafield Nuclear Facility. The pond is kept alkaline with NaOH to minimise fuel rod corrosion, however alkali-tolerant microbial blooms dominated by the cyanobacterium Pseudanabaena catenata are able to thrive in this hostile environment. This study assessed the impact of alternative alkali-dosing regimens (KOH versus NaOH treatment) on biomass accumulation, using a P. catenata dominated mixed culture, which is representative of the pond environment. Optical density was reduced by 40-67 % with KOH treatment over the 3-month chemostat experiment. Microbial community analysis and proteomics demonstrated that the KOH-dependent inhibition of cell growth was mostly specific to P. catenata. The addition of KOH to nuclear storage ponds may therefore help control growth of this pioneer photosynthetic organism due to its sensitivity to potassium, while maintaining the high pH needed to inhibit the corrosion of stored nuclear fuel.


Subject(s)
Cyanobacteria , Ponds , Cyanobacteria/growth & development , Cyanobacteria/metabolism , Cyanobacteria/physiology , Ponds/microbiology , Potassium Compounds/pharmacology , Hydroxides/pharmacology , Potassium/metabolism , Potassium/analysis , Biomass
2.
J Nanobiotechnology ; 22(1): 203, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659001

ABSTRACT

BACKGROUND: Biogeochemical processing of metals including the fabrication of novel nanomaterials from metal contaminated waste streams by microbial cells is an area of intense interest in the environmental sciences. RESULTS: Here we focus on the fate of Ce during the microbial reduction of a suite of Ce-bearing ferrihydrites with between 0.2 and 4.2 mol% Ce. Cerium K-edge X-ray absorption near edge structure (XANES) analyses showed that trivalent and tetravalent cerium co-existed, with a higher proportion of tetravalent cerium observed with increasing Ce-bearing of the ferrihydrite. The subsurface metal-reducing bacterium Geobacter sulfurreducens was used to bioreduce Ce-bearing ferrihydrite, and with 0.2 mol% and 0.5 mol% Ce, an Fe(II)-bearing mineral, magnetite (Fe(II)(III)2O4), formed alongside a small amount of goethite (FeOOH). At higher Ce-doping (1.4 mol% and 4.2 mol%) Fe(III) bioreduction was inhibited and goethite dominated the final products. During microbial Fe(III) reduction Ce was not released to solution, suggesting Ce remained associated with the Fe minerals during redox cycling, even at high Ce loadings. In addition, Fe L2,3 X-ray magnetic circular dichroism (XMCD) analyses suggested that Ce partially incorporated into the Fe(III) crystallographic sites in the magnetite. The use of Ce-bearing biomagnetite prepared in this study was tested for hydrogen fuel cell catalyst applications. Platinum/carbon black electrodes were fabricated, containing 10% biomagnetite with 0.2 mol% Ce in the catalyst. The addition of bioreduced Ce-magnetite improved the electrode durability when compared to a normal Pt/CB catalyst. CONCLUSION: Different concentrations of Ce can inhibit the bioreduction of Fe(III) minerals, resulting in the formation of different bioreduction products. Bioprocessing of Fe-minerals to form Ce-containing magnetite (potentially from waste sources) offers a sustainable route to the production of fuel cell catalysts with improved performance.


Subject(s)
Cerium , Ferrosoferric Oxide , Geobacter , Platinum , Cerium/chemistry , Cerium/metabolism , Geobacter/metabolism , Catalysis , Ferrosoferric Oxide/chemistry , Platinum/chemistry , Oxidation-Reduction , Ferric Compounds/chemistry , Ferric Compounds/metabolism
3.
Cancers (Basel) ; 16(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473239

ABSTRACT

Increasing efforts are focusing on natural killer (NK) cell immunotherapies for AML. Here, we characterized CC-96191, a novel CD33/CD16a/NKG2D immune-modulating TriNKET®. CC-96191 simultaneously binds CD33, NKG2D, and CD16a, with NKG2D and CD16a co-engagement increasing the avidity for, and activation of, NK cells. CC-96191 was broadly active against human leukemia cells in a strictly CD33-dependent manner, with maximal efficacy requiring the co-engagement of CD16a and NKG2D. A frequent CD33 single nucleotide polymorphism, R69G, reduced CC-96191 potency but not maximal activity, likely because of reduced CD33 binding. Similarly, the potency, but not the maximal activity, of CC-96191 was reduced by high concentrations of soluble CD33; in contrast, the soluble form of the NKG2D ligand MICA did not impact activity. In the presence of CD33+ AML cells, CC-96191 activated NK cells but not T cells; while maximum anti-AML efficacy was similar, soluble cytokine levels were 10- to >100-fold lower than with a CD33/CD3 bispecific antibody. While CC-96191-mediated cytolysis was not affected by ABC transporter proteins, it was reduced by anti-apoptotic BCL-2 family proteins. Finally, in patient marrow specimens, CC-96191 eliminated AML cells but not normal monocytes, suggesting selectivity of TriNKET-induced cytotoxicity toward neoplastic cells. Together, these findings support the clinical exploration of CC-96191 as in NCT04789655.

4.
ACS Earth Space Chem ; 8(3): 483-498, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38533191

ABSTRACT

Microbial ureolysis offers the potential to remove metals including Sr2+ as carbonate minerals via the generation of alkalinity coupled to NH4+ and HCO3- production. Here, we investigated the potential for bacteria, indigenous to sediments representative of the U.K. Sellafield nuclear site where 90Sr is present as a groundwater contaminant, to utilize urea in order to target Sr2+-associated (Ca)CO3 formation in sediment microcosm studies. Strontium removal was enhanced in most sediments in the presence of urea only, coinciding with a significant pH increase. Adding the biostimulation agents acetate/lactate, Fe(III), and yeast extract to further enhance microbial metabolism, including ureolysis, enhanced ureolysis and increased Sr and Ca removal. Environmental scanning electron microscopy analyses suggested that coprecipitation of Ca and Sr occurred, with evidence of Sr associated with calcium carbonate polymorphs. Sr K-edge X-ray absorption spectroscopy analysis was conducted on authentic Sellafield sediments stimulated with Fe(III) and quarry outcrop sediments amended with yeast extract. Spectra from the treated Sellafield and quarry sediments showed Sr2+ local coordination environments indicative of incorporation into calcite and vaterite crystal structures, respectively. 16S rRNA gene analysis identified ureolytic bacteria of the genus Sporosarcina in these incubations, suggesting they have a key role in enhancing strontium removal. The onset of ureolysis also appeared to enhance the microbial reduction of Fe(III), potentially via a tight coupling between Fe(III) and NH4+ as an electron donor for metal reduction. This suggests ureolysis may support the immobilization of 90Sr via coprecipitation with insoluble calcium carbonate and cofacilitate reductive precipitation of certain redox active radionuclides, e.g., uranium.

5.
Small ; : e2311016, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38461530

ABSTRACT

The biosynthesis of Pd nanoparticles supported on microorganisms (bio-Pd) is achieved via the enzymatic reduction of Pd(II) to Pd(0) under ambient conditions using inexpensive buffers and electron donors, like organic acids or hydrogen. Sustainable bio-Pd catalysts are effective for C-C coupling and hydrogenation reactions, but their industrial application is limited by challenges in controlling nanoparticle properties. Here, using the metal-reducing bacterium Geobacter sulfurreducens, it is demonstrated that synthesizing bio-Pd under different Pd loadings and utilizing different electron donors (acetate, formate, hydrogen, no e- donor) influences key properties such as nanoparticle size, Pd(II):Pd(0) ratio, and cellular location. Controlling nanoparticle size and location controls the activity of bio-Pd for the reduction of 4-nitrophenol, whereas high Pd loading on cells synthesizes bio-Pd with high activity, comparable to commercial Pd/C, for Suzuki-Miyaura coupling reactions. Additionally, the study demonstrates the novel synthesis of microbially-supported ≈2 nm PdO nanoparticles due to the hydrolysis of biosorbed Pd(II) in bicarbonate buffer. Bio-PdO nanoparticles show superior activity in 4-nitrophenol reduction compared to commercial Pd/C catalysts. Overall, controlling biosynthesis parameters, such as electron donor, metal loading, and solution chemistry, enables tailoring of bio-Pd physicochemical and catalytic properties.

6.
Sci Total Environ ; 926: 171813, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38513868

ABSTRACT

Oil spills are a global challenge, contaminating the environment with organics and metals known to elicit toxic effects. Ecosystems within Nigeria's Niger Delta have suffered from prolonged severe spills for many decades but the level of impact on the soil microbial community structure and the potential for contaminant bioremediation remains unclear. Here, we assessed the extent/impact of an oil spill in this area 6 months after the accident on both the soil microbial community/diversity and the distribution of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHDGNα) genes, responsible for encoding enzymes involved in the degradation of PAHs, across the impacted area. Analyses confirmed the presence of oil contamination, including metals such as Cr and Ni, across the whole impacted area and at depth. The contamination impacted on the microbial community composition, resulting in a lower diversity in all contaminated soils. Gamma-, Delta-, Alpha- proteobacteria and Acidobacteriia dominated 16S rRNA gene sequences across the contaminated area, while Ktedonobacteria dominated the non-contaminated soils. The PAH-RHDαGN genes were only detected in the contaminated area, highlighting a clear relationship with the oil contamination/hydrocarbon metabolism. Correlation analysis indicated significant positive relationships between the oil contaminants (organics, Cr and Ni), PAH-RHDαGN gene, and the presence of bacteria/archaea such as Anaerolinea, Spirochaetia Bacteroidia Thermoplasmata, Methanomicrobia, and Methanobacteria indicating that the oil contamination not only impacted the microbial community/diversity present, but that the microbes across the impacted area and at depth were potentially playing an important role in degrading the oil contamination present. These findings provide new insights on the level of oil contamination remaining 6 months after an oil spill, its impacts on indigenous soil microbial communities and their potential for in situ bioremediation within a Niger Delta's ecosystem. It highlights the strength of using a cross-disciplinary approach to assess the extent of oil pollution in a single study.


Subject(s)
Alphaproteobacteria , Microbiota , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Soil , RNA, Ribosomal, 16S/genetics , Niger , Bacteria/metabolism , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/metabolism , Alphaproteobacteria/genetics , Soil Microbiology , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Biodegradation, Environmental
7.
Environ Sci Technol ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317381

ABSTRACT

Ammonium-related pathways are important for groundwater arsenic (As) enrichment, especially via microbial Fe(III) reduction coupled with anaerobic ammonium oxidation; however, the key pathways (and microorganisms) underpinning ammonium-induced Fe(III) reduction and their contributions to As mobilization in groundwater are still unknown. To address this gap, aquifer sediments hosting high As groundwater from the western Hetao Basin were incubated with 15N-labeled ammonium and external organic carbon sources (including glucose, lactate, and lactate/acetate). Decreases in ammonium concentrations were positively correlated with increases in the total produced Fe(II) (Fe(II)tot) and released As. The molar ratios of Fe(II)tot to oxidized ammonium ranged from 3.1 to 3.7 for all incubations, and the δ15N values of N2 from the headspace increased in 15N-labeled ammonium-treated series, suggesting N2 as the key end product of ammonium oxidation. The addition of ammonium increased the As release by 16.1% to 49.6%, which was more pronounced when copresented with organic electron donors. Genome-resolved metagenomic analyses (326 good-quality MAGs) suggested that ammonium-induced Fe(III) reduction in this system required syntrophic metabolic interactions between bacterial Fe(III) reduction and archaeal ammonium oxidation. The current results highlight the significance of syntrophic ammonium-stimulated Fe(III) reduction in driving As mobilization, which is underestimated in high As groundwater.

8.
Environ Res ; 242: 117667, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37980994

ABSTRACT

Vivianite (Fe3(PO4)2·8H2O), a sink for phosphorus, is a key mineralization product formed during the microbial reduction of phosphate-containing Fe(III) minerals in natural systems, and also in wastewater treatment where Fe(III)-minerals are used to remove phosphate. As biovivianite is a potentially useful Fe and P fertiliser, there is much interest in harnessing microbial biovivianite synthesis for circular economy applications. In this study, we investigated the factors that influence the formation of microbially-synthesized vivianite (biovivianite) under laboratory batch systems including the presence and absence of phosphate and electron shuttle, the buffer system, pH, and the type of Fe(III)-reducing bacteria (comparing Geobacter sulfurreducens and Shewanella putrefaciens). The rate of Fe(II) production, and its interactions with the residual Fe(III) and other oxyanions (e.g., phosphate and carbonate) were the main factors that controlled the rate and extent of biovivianite formation. Higher concentrations of phosphate (e.g., P/Fe = 1) in the presence of an electron shuttle, at an initial pH between 6 and 7, were needed for optimal biovivianite formation. Green rust, a key intermediate in biovivianite production, could be detected as an endpoint alongside vivianite and metavivianite (Fe2+Fe3+2(PO4)2.(OH)2.6H2O), in treatments with G. sulfurreducens and S. putrefaciens. However, XRD indicated that vivianite abundance was higher in experiments containing G. sulfurreducens, where it dominated. This study, therefore, shows that vivianite formation can be controlled to optimize yield during microbial processing of phosphate-loaded Fe(III) materials generated from water treatment processes.


Subject(s)
Ferric Compounds , Ferrous Compounds , Shewanella putrefaciens , Oxidation-Reduction , Phosphates , Minerals
9.
Front Microbiol ; 14: 1261801, 2023.
Article in English | MEDLINE | ID: mdl-37860139

ABSTRACT

The presence of microorganisms in a range of nuclear facilities has been known for many years. In this study the microbial community inhabiting the Pile Fuel Storage Pond (PFSP), which is a legacy open-aired facility on the Sellafield nuclear site, Cumbria, UK, was determined to help target microbial bloom management strategies in this facility. The PFSP is currently undergoing decommissioning and the development of prolonged dense microbial blooms reduces the visibility within the water. Such impairment in the pond water visibility can lead to delays in pond operations, which also has financial implications. Efforts to control the microbial population within the PFSP are ongoing, with the installation of ultrasonic treatment units. Here next generation sequencing techniques focussing on broad targets for both eukaryotic and prokaryotic organisms were used to identify the microbial community. On-site monitoring of photosynthetic pigments indicated when microbial blooms formed and that eukaryotic algae were most likely to be responsible for these events. The sequencing data suggested that the blooms were dominated by members of the class Chrysophyceae, a group of golden algae, while evidence of cyanobacteria and other photosynthetic bacteria was limited, further supporting eukaryotic organisms causing the blooms. The results of sequencing data from 2018 was used to inform a change in the operational settings of the ultrasonic units, while monitoring of the microbial community and photosynthetic pigments trends was extended. Since the changes were made to the ultrasonic treatment, the visibility in the pond was significantly improved, with an absence of a spring bloom in 2020 and an overall reduction in the number of days lost due to microbial blooms annually. This work extends our knowledge of the diversity of microbes able to colonise nuclear fuel storage ponds, and also suggests that sequencing data can help to optimise the performance of ultrasonic treatments, to control algal proliferation in the PFSP facility and other inhospitable engineered systems.

10.
Biofouling ; 39(8): 785-799, 2023.
Article in English | MEDLINE | ID: mdl-37877442

ABSTRACT

Nuclear facility discharge pipelines accumulate inorganic and microbial fouling and radioactive contamination, however, research investigating the mechanisms that lead to their accumulation is limited. Using the Sellafield discharge pipeline as a model system, this study utilised modified Robbins devices to investigate the potential interplay between inorganic and biological processes in supporting fouling formation and radionuclide uptake. Initial experiments showed polyelectrolytes (present in pipeline effluents), had minimal effects on fouling formation. Biofilms were, however, found to be the key component promoting fouling, leading to increased uptake of inorganic particulates and metal contaminants (Cs, Sr, Co, Eu and Ru) compared to a non-biofilm control system. Biologically-mediated uptake mechanisms were implicated in Co and Ru accumulation, with a potential bioreduced Ru species identified on the biofilm system. This research emphasised the key role of biofilms in promoting fouling in discharge pipelines, advocating for the use of biocide treatments methods.


Subject(s)
Biofouling , Disinfectants , Biofilms , Biofouling/prevention & control , Biological Transport , Metals , Membranes, Artificial
11.
ACS ES T Water ; 3(10): 3223-3234, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37854271

ABSTRACT

Historical operations at nuclear mega-facilities such as Hanford, USA, and Sellafield, UK have led to a legacy of radioactivity-contaminated land. Calcium phosphate phases (e.g., hydroxyapatite) can adsorb and/or incorporate radionuclides, including 90Sr. Past work has shown that aqueous injection of Ca-phosphate-generating solutions into the contaminated ground on both laboratory and field scales can reduce the amount of aqueous 90Sr in the systems. Here, two microbially mediated phosphate amendment techniques which precipitated Ca-phosphate, (i) Ca-citrate/Na-phosphate and (ii) glycerol phosphate, were tested in batch experiments alongside an abiotic treatment ((iii) polyphosphate), using stable Sr and site relevant groundwaters and sediments. All three amendments led to enhanced Sr removal from the solution compared to the sediment-only control. The Ca-citrate/Na-phosphate treatment removed 97%, glycerol phosphate 60%, and polyphosphate 55% of the initial Sr. At experimental end points, scanning electron microscopy showed that Sr-containing, Ca-phosphate phases were deposited on sediment grains, and XAS analyses of the sediments amended with Ca-citrate/Na-phosphate and glycerol phosphate confirmed Sr incorporation into Ca-phosphates occurred. Overall, Ca-phosphate-generating treatments have the potential to be applied in a range of nuclear sites and are a key option within the toolkit for 90Sr groundwater remediation.

12.
Extremophiles ; 27(3): 27, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37839067

ABSTRACT

Decades of nuclear activities have left a legacy of hazardous radioactive waste, which must be isolated from the biosphere for over 100,000 years. The preferred option for safe waste disposal is a deep subsurface geological disposal facility (GDF). Due to the very long geological timescales required, and the complexity of materials to be disposed of (including a wide range of nutrients and electron donors/acceptors) microbial activity will likely play a pivotal role in the safe operation of these mega-facilities. A GDF environment provides many metabolic challenges to microbes that may inhabit the facility, including high temperature, pressure, radiation, alkalinity, and salinity, depending on the specific disposal concept employed. However, as our understanding of the boundaries of life is continuously challenged and expanded by the discovery of novel extremophiles in Earth's most inhospitable environments, it is becoming clear that microorganisms must be considered in GDF safety cases to ensure accurate predictions of long-term performance. This review explores extremophilic adaptations and how this knowledge can be applied to challenge our current assumptions on microbial activity in GDF environments. We conclude that regardless of concept, a GDF will consist of multiple extremes and it is of high importance to understand the limits of polyextremophiles under realistic environmental conditions.


Subject(s)
Extremophiles , Radioactive Waste , Refuse Disposal , Radioactive Waste/analysis
13.
Environ Microbiol ; 25(12): 3139-3150, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37697680

ABSTRACT

Microorganisms can facilitate the reduction of Cu2+ , altering its speciation and mobility in environmental systems and producing Cu-based nanoparticles with useful catalytic properties. However, only a few model organisms have been studied in relation to Cu2+ bioreduction and little work has been carried out on microbes from Cu-contaminated environments. This study aimed to enrich for Cu-resistant microbes from a Cu-contaminated soil and explore their potential to facilitate Cu2+ reduction and biomineralisation from solution. We show that an enrichment grown in a Cu-amended medium, dominated by species closely related to Geothrix fermentans, Azospira restricta and Cellulomonas oligotrophica, can reduce Cu2+ with subsequent precipitation of Cu nanoparticles. Characterisation of the nanoparticles with (scanning) transmission electron microscopy, energy-dispersive x-ray spectroscopy and electron energy loss spectroscopy supports the presence of both metallic Cu(0) and S-rich Cu(I) nanoparticles. This study provides new insights into the diversity of microorganisms capable of facilitating copper reduction and highlights the potential for the formation of distinct nanoparticle phases resulting from bioreduction or biomineralisation reactions. The implications of these findings for the biogeochemical cycling of copper and the potential biotechnological synthesis of commercially useful copper nanoparticles are discussed.


Subject(s)
Copper , Nanoparticles , Nanoparticles/chemistry
14.
Int J Mol Sci ; 24(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37511377

ABSTRACT

The biological production of hydrogen is an appealing approach to mitigating the environmental problems caused by the diminishing supply of fossil fuels and the need for greener energy. Escherichia coli is one of the best-characterized microorganisms capable of consuming glycerol-a waste product of the biodiesel industry-and producing H2 and ethanol. However, the natural capacity of E. coli to generate these compounds is insufficient for commercial or industrial purposes. Metabolic engineering allows for the rewiring of the carbon source towards H2 production, although the strategies for achieving this aim are difficult to foresee. In this work, we use metabolomics platforms through GC-MS and FT-IR techniques to detect metabolic bottlenecks in the engineered ΔldhΔgndΔfrdBC::kan (M4) and ΔldhΔgndΔfrdBCΔtdcE::kan (M5) E. coli strains, previously reported as improved H2 and ethanol producers. In the M5 strain, increased intracellular citrate and malate were detected by GC-MS. These metabolites can be redirected towards acetyl-CoA and formate by the overexpression of the citrate lyase (CIT) enzyme and by co-overexpressing the anaplerotic human phosphoenol pyruvate carboxykinase (hPEPCK) or malic (MaeA) enzymes using inducible promoter vectors. These strategies enhanced specific H2 production by up to 1.25- and 1.49-fold, respectively, compared to the reference strains. Other parameters, such as ethanol and H2 yields, were also enhanced. However, these vectors may provoke metabolic burden in anaerobic conditions. Therefore, alternative strategies for a tighter control of protein expression should be addressed in order to avoid undesirable effects in the metabolic network.


Subject(s)
Escherichia coli , Metabolic Engineering , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Ethanol/metabolism , Hydrogen/metabolism , Spectroscopy, Fourier Transform Infrared , Metabolomics
15.
J Hazard Mater ; 445: 130556, 2023 03 05.
Article in English | MEDLINE | ID: mdl-37055967

ABSTRACT

Pseudanabaena dominates cyanobacterial blooms in the First-Generation Magnox Storage Pond (FGMSP) at a UK nuclear site. The fission product Cs is a radiologically significant radionuclide in the pond, and understanding the interactions between Cs and Pseudanabaena spp. is therefore important for determining facility management strategies, as well as improving understanding of microbiological responses to this non-essential chemical analogue of K. This study evaluated the fate of Cs following interactions with Pseudanabaena catenata, a laboratory strain most closely related to that dominating FGMSP blooms. Experiments showed that Cs (1 mM) exposure did not affect the growth of P. catenata, while a high concentration of K (5 mM) caused a significant reduction in cell yield. Scanning transmission X-ray microscopy elemental mapping identified Cs accumulation to discrete cytoplasmic locations within P. catenata cells, indicating a potential bioremediation option for Cs. Proteins related to stress responses and nutrient limitation (K, P) were stimulated by Cs treatment. Furthermore, selected K+ transport proteins were mis-regulated by Cs dosing, which indicates the importance of the K+ transport system for Cs accumulation. These findings enhance understanding of Cs fate and biological responses within Pseudanabaena blooms, and indicate that K exposure might provide a microbial bloom control strategy.


Subject(s)
Cyanobacteria , Biodegradation, Environmental , Ponds , Eutrophication , Lakes
16.
Environ Microbiome ; 18(1): 14, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36855215

ABSTRACT

BACKGROUND: Hydraulically fractured shales offer a window into the deep biosphere, where hydraulic fracturing creates new microbial ecosystems kilometers beneath the surface of the Earth. Studying the microbial communities from flowback fluids that are assumed to inhabit these environments provides insights into their ecophysiology, and in particular their ability to survive in these extreme environments as well as their influence on site operation e.g. via problematic biofouling processes and/or biocorrosion. Over the past decade, research on fractured shale microbiology has focused on wells in North America, with a few additional reported studies conducted in China. To extend the knowledge in this area, we characterized the geochemistry and microbial ecology of two exploratory shale gas wells in the Bowland Shale, UK. We then employed a meta-analysis approach to compare geochemical and 16S rRNA gene sequencing data from our study site with previously published research from geographically distinct formations spanning China, Canada and the USA. RESULTS: Our findings revealed that fluids recovered from exploratory wells in the Bowland are characterized by moderate salinity and high microbial diversity. The microbial community was dominated by lineages known to degrade hydrocarbons, including members of Shewanellaceae, Marinobacteraceae, Halomonadaceae and Pseudomonadaceae. Moreover, UK fractured shale communities lacked the usually dominant Halanaerobium lineages. From our meta-analysis, we infer that chloride concentrations play a dominant role in controlling microbial community composition. Spatio-temporal trends were also apparent, with different shale formations giving rise to communities of distinct diversity and composition. CONCLUSIONS: These findings highlight an unexpected level of compositional heterogeneity across fractured shale formations, which is not only relevant to inform management practices but also provides insight into the ability of diverse microbial consortia to tolerate the extreme conditions characteristic of the engineered deep subsurface.

17.
Appl Environ Microbiol ; 89(3): e0217522, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36853045

ABSTRACT

The reduction of Sb(V)-bearing ferrihydrite by Geobacter sulfurreducens was studied to determine the fate of the metalloid in Fe-rich systems undergoing redox transformations. Sb(V) added at a range of concentrations adsorbed readily to ferrihydrite, and the loadings had a pronounced impact on the rate and extent of Fe(III) reduction and the products formed. Magnetite dominated at low (0.5 and 1 mol%) Sb(V) concentrations, with crystallite sizes decreasing at higher Sb loadings: 37-, 25-, and 17-nm particles for no-Sb, 0.5% Sb, and 1% Sb samples, respectively. In contrast, goethite was the dominant end product for samples with higher antimony loadings (2 and 5 mol%), with increased goethite grain size in the 5% Sb sample. Inductively coupled mass spectrometry (ICP-MS) analysis confirmed that Sb was not released to solution during the bioreduction process, and X-ray photoelectron spectroscopy (XPS) analyses showed that no Sb(III) was formed throughout the experiments, confirming that the Fe(III)-reducing bacterium Geobacter sulfurreducens cannot reduce Sb(V) enzymatically or via biogenic Fe(II). These findings suggest that Fe (bio)minerals have a potential role in limiting antimony pollution in the environment, even when undergoing redox transformations. IMPORTANCE Antimony is an emerging contaminant that shares chemical characteristics with arsenic. Metal-reducing bacteria (such as Geobacter sulfurreducens) can cause the mobilization of arsenic from Fe(III) minerals under anaerobic conditions, causing widespread contamination of aquifers worldwide. This research explores whether metal-reducing bacteria can drive the mobilization of antimony under similar conditions. In this study, we show that G. sulfurreducens cannot reduce Sb(V) directly or cause Sb release during the bioreduction of the Fe(III) mineral ferrihydrite [although the sorbed Sb(V) did alter the Fe(II) mineral end products formed]. Overall, this study highlights the tight associations between Fe and Sb in environmental systems, suggesting that the microbial reduction of Fe(III)/Sb mineral assemblages may not lead to Sb release (in stark contrast to the mobilization of As in iron-rich systems) and offers potential Fe-based remediation options for Sb-contaminated environments.


Subject(s)
Arsenic , Geobacter , Ferric Compounds/metabolism , Antimony , Arsenic/metabolism , Minerals/metabolism , Ferrosoferric Oxide/metabolism , Geobacter/metabolism , Oxidation-Reduction
18.
Sci Total Environ ; 858(Pt 3): 160066, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36356776

ABSTRACT

Sulfide-induced reduction (sulfidization) of arsenic (As)-bearing Fe(III) (oxyhydro)oxides may lead to As mobilization in aquifer systems. However, little is known about the relative contributions of sulfidization and non-sulfidization of Fe(III) (oxyhydro)oxides reduction to As mobilization. To address this issue, high As groundwater with low sulfide (LS) and high sulfide (HS) concentrations were pumped through As(V)-bearing ferrihydrite-coated sand columns (LS-column and HS-column, respectively) being settled within wells in the western Hetao Basin, China. Sulfidization of As(V)-bearing ferrihydrite was evidenced by the increase in dissolved Fe(II) and the presence of solid Fe(II) and elemental sulfur (S0) in both the columns. A conceptual model was built using accumulated S0 and Fe(II) produced in the columns to calculate the proportions of sulfidization-induced Fe(III) (oxyhydro)oxide reduction and non-sulfidization-induced Fe(III) (oxyhydro)oxide reduction. Fe(III) reduction via sulfidization occurred preferentially in the inlet ends (LS-column, 31 %; HS-column, 86 %), while Fe(III) reduction via non-sulfidization processes predominated in the outlet ends (LS-column, 96 %; HS-column, 86 %), and was attributed to the metabolism of genera associated with Fe(III) reduction (including Shewanella, Ferribacterium, and Desulfuromonas). Arsenic was mobilized in the columns via sulfidization and non-sulfidization processes. More As was released from the solid of the HS-column than that of the LS-column due to the higher intensity of sulfidization in the presence of higher concentrations of dissolved S(-II). Overall, this study highlights the sulfidization of As-bearing Fe(III) (oxyhydro)oxides as an important As-mobilizing pathway in complex As-Fe-S bio-hydrogeochemical networks.


Subject(s)
Arsenic , Ferric Compounds , Sand , Sulfides , Oxides , Ferrous Compounds
19.
Microbiol Spectr ; 10(6): e0364022, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36453927

ABSTRACT

Shale gas production fluids offer a window into the engineered deep biosphere. Here, for the first time, we report on the geochemistry and microbiology of production fluids from a UK shale gas well in the Bowland shale formation. The composition of input fluids used to fracture this well were comparatively lean, consisting only of water, sand, and polyacrylamide. This formation therefore represents an interesting comparison to previously explored fractured shales in which more additives were used in the input fluids. Here, we combine cultivation and molecular ecology techniques to explore the microbial community composition of hydraulic fracturing production fluids, with a focus on the potential for common viscosity modifiers to stimulate microbial growth and biogenic sulfide production. Production fluids from a Bowland Shale exploratory well were used as inocula in substrate utilization experiments to test the potential for polyacrylamide and guar gum to stimulate microbial metabolism. We identified a consortium of thiosulfate-reducing bacteria capable of utilizing guar gum (but not polyacrylamide), resulting in the production of corrosive and toxic hydrogen sulfide. Results from this study indicate polyacrylamide is less likely than guar gum to stimulate biogenic sulfide production during shale gas extraction and may guide planning of future hydraulic fracturing operations. IMPORTANCE Shale gas exploitation relies on hydraulic fracturing, which often involves a range of chemical additives in the injection fluid. However, relatively little is known about how these additives influence fractured shale microbial communities. This work offers a first look into the microbial community composition of shale gas production fluids obtained from an exploratory well in the Bowland Shale, United Kingdom. It also seeks to establish the impact of two commonly used viscosity modifiers, polyacrylamide and guar gum, on microbial community dynamics and the potential for microbial sulfide production. Not only does this work offer fascinating insights into the engineered deep biosphere, it could also help guide future hydraulic fracturing operations that seek to minimize the risk of biogenic sulfide production, which could reduce efficiency and increase environmental impacts of shale gas extraction.


Subject(s)
Microbiota , Natural Gas , Oil and Gas Fields , Sulfides
20.
Geochem Trans ; 23(1): 2, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36167930

ABSTRACT

The Santa Elena Ophiolite is a well-studied ultramafic system in Costa Rica mainly comprised of peridotites. Here, tropical climatic conditions promote active laterite formation processes, but the biogeochemistry of the resulting serpentine soils is still poorly understood. The aim of this study was to characterize the soil geochemical composition and microbial community of contrasting landscapes in the area, as the foundation to start exploring the biogeochemistry of metals occurring there. The soils were confirmed as Ni-rich serpentine soils but differed depending on their geographical location within the ophiolite area, showing three serpentine soil types. Weathering processes resulted in mountain soils rich in trace metals such as cobalt, manganese and nickel. The lowlands showed geochemical variations despite sharing similar landscapes: the inner ophiolite lowland soils were more like the surrounding mountain soils rather than the north lowland soils at the border of the ophiolite area, and within the same riparian basin, concentrations of trace metals were higher downstream towards the mangrove area. Microbial community composition reflected the differences in geochemical composition of soils and revealed potential geomicrobiological inputs to local metal biogeochemistry: iron redox cycling bacteria were more abundant in the mountain soils, while more manganese-oxidizing bacteria were found in the lowlands, with the highest relative abundance in the mangrove areas. The fundamental ecological associations recorded in the serpentine soils of the Santa Elena Peninsula, and its potential as a serpentinization endemism hotspot, demonstrate that is a model site to study the biogeochemistry, geomicrobiology and ecology of tropical serpentine areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...