Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 319 ( Pt 2): 641-8, 1996 Oct 15.
Article in English | MEDLINE | ID: mdl-8912706

ABSTRACT

Several studies have suggested that murine and human keratinocytes respond differently to phorbol 12-myristate 13-acetate (PMA). Using an in vitro assay, we found that in contrast to its effect on murine skin, PMA did not induce ornithine decarboxylase (ODC) activity in human skin biopsies. To explore the signalling induced by PMA and to determine whether an in vitro culture system could be used to predict biological activity of retinoids in human keratinocytes, we studied a simian virus 40 (SV40)-transformed human keratinocyte cell line. Epidermal growth factor (EGF) stimulates ODC activity and increases the steady-state level of ODC mRNA in a dose- and time-dependent manner in these cells [Prystowsky, Clevenger and Zheng (1993) Exp. Dermatol. 2, 125-132]. In this report, 10(-10) M-10(-7) M PMA induced ODC mRNA and enzyme synthesis at 7 h, but did not significantly induce ODC activity and inhibited the EGF induction of ODC activity. To explore the mechanism whereby PMA interfered with EGF signalling, the effect of PMA on EGF binding to its cell-surface receptor was studied; acute treatment with PMA (within 7 h) decreased EGF binding to 41-57% of the baseline level. In contrast, chronic treatment with PMA (24 h) increased EGF binding to 156% of the baseline level and was associated with an increase in quantity of EGF receptor protein. Protein kinase C (PKC) activation correlated with the acute decrease in EGF binding following PMA treatment. In summary, PMA induced ODC mRNA and ODC enzyme synthesis, while steady-state levels of immunoprecipitable ODC enzyme protein and ODC activity were not increased, demonstrating possible increased turnover of ODC enzyme protein. Additionally, PMA inhibited the induction of ODC by EGF through decreased EGF binding, possibly mediated by PKC activation. Finally treatment of the keratinocytes with retinoids including etretinate, Ro13-7410, etarotene, Ro40-8757, 13-cisretinoic acid, and acitretin blocked the PMA induction of ODC mRNA, suggesting this in vitro model could be a valuable screening assay for predicting biological activity in humans.


Subject(s)
Epidermal Growth Factor/pharmacology , Inositol Phosphates/pharmacology , Keratinocytes/metabolism , Ornithine Decarboxylase/biosynthesis , Signal Transduction/drug effects , Tetradecanoylphorbol Acetate/pharmacology , Cells, Cultured , Down-Regulation , Humans , RNA, Messenger/biosynthesis
2.
Chem Phys Lipids ; 67-68: 175-90, 1994 Jan.
Article in English | MEDLINE | ID: mdl-8187212

ABSTRACT

Lipoprotein (a) (Lp(a)) is known to be an independent risk factor for cardiovascular disease, but the mechanisms by which it contributes to this disease remain unclear. Current evidence indicates that the closely related plasma particle, low-density lipoprotein (LDL), may initiate atherosclerosis through deposition in the arterial wall. This study has compared the ability of both lipoproteins to enter and accumulate within the arterial wall. Experiments were conducted in vivo with animals from two strains of mice: C57BL/6 mice, which develop fatty streak lesions upon challenge by a high-fat diet, and C3H/HeJ mice, which are resistant to lesion formation. Animals from both strains were maintained up to 16 weeks either on chow or high-fat diet. The mice were intravenously injected with 125I-labeled human Lp(a) or 125I-labeled human LDL in equimolar amounts and the lipoprotein allowed to circulate in vivo for 2 or 24 h. Transverse sections of the aortic root including sites of predilection for lesion formation at the commissures of the valve were prepared and examined after autoradiography. The autoradiographic grains over lesions and histologically uninvolved areas were enumerated and compared after normalization. Both Lp(a) and LDL demonstrated nearly ten times greater accumulation in lesions compared with histologically uninvolved areas from C57BL/6 mice. Analyses of histologically uninvolved areas from both strains of mice showed a significantly higher accumulation of Lp(a) than LDL. Finally, significantly higher accumulations of both Lp(a) and LDL occurred in the histologically uninvolved intima and subintima of lesion-prone C57BL/6 mice as compared with lesion-resistant C3H/HeJ mice after 5 weeks on the diets. We propose that enhanced accumulation of Lp(a) in the arterial wall accounts, in part, for the increased risk of cardiovascular disease.


Subject(s)
Aorta/metabolism , Lipoprotein(a)/metabolism , Lipoproteins, LDL/metabolism , Animals , Aorta/pathology , Arteriosclerosis/etiology , Arteriosclerosis/metabolism , Arteriosclerosis/pathology , Cardiovascular Diseases/etiology , Diet, Atherogenic , Female , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Risk Factors , Species Specificity
3.
Exp Eye Res ; 55(6): 869-78, 1992 Dec.
Article in English | MEDLINE | ID: mdl-1283128

ABSTRACT

Refsum's disease (heredopathia atactica polyneuritiformis) is an autosomal recessive retinitis pigmentosa syndrome caused by the excessive deposition of phytanic acid in ocular tissues. It is thought that phytanic acid causes retinal degeneration either by interfering with vitamin A metabolism in the retinal pigment epithelium or by altering photoreceptor cell membrane structure. Efforts to elucidate the molecular mechanism of phytanic acid's retinal toxicity have been hampered by the rarity of human pathological specimens and by the inability to reproduce the disease in living animal models. In this study, an in vitro model for Refsum's disease was established by exposing cultured human and bovine retinal pigment epithelial cells to phytanic acid bound to bovine serum albumin at concentrations comparable to levels found in affected humans. Ultrastructural studies show that these cells exhibit morphological changes consistent with those observed in pathological specimens from patients with Refsum's disease. Biochemical assays of retinoid metabolism by cell membranes from control cells and from cells exposed to 200 microM phytanic acid demonstrate that the ability to esterify retinol and to isomerize all-trans retinoids to 11-cis retinoids remains intact despite the deposition of large amounts of phytanic acid. The work described here is strong evidence against the hypothesis that phytanic acid inhibits vitamin A metabolism in the retinal pigment epithelium, and it demonstrates the potential use of cultured retinal pigment epithelial cells in modeling this and other degenerative diseases of the retina.


Subject(s)
Phytanic Acid/metabolism , Pigment Epithelium of Eye/metabolism , Refsum Disease/metabolism , Animals , Cattle , Cells, Cultured , Humans , Microscopy, Electron , Models, Biological , Pigment Epithelium of Eye/drug effects , Pigment Epithelium of Eye/ultrastructure , Refsum Disease/pathology , Retinoids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...