Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (61)2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22491160

ABSTRACT

Numerous and diverse physiological changes occur during fruit ripening, including the development of a specific volatile blend that characterizes fruit aroma. Maturity at harvest is one of the key factors influencing the flavor quality of fruits and vegetables. The validation of robust methods that rapidly assess fruit maturity and aroma quality would allow improved management of advanced breeding programs, production practices and postharvest handling. Over the last three decades, much research has been conducted to develop so-called electronic noses, which are devices able to rapidly detect odors and flavors. Currently there are several commercially available electronic noses able to perform volatile analysis, based on different technologies. The electronic nose used in our work (zNose, EST, Newbury Park, CA, USA), consists of ultra-fast gas chromatography coupled with a surface acoustic wave sensor (UFGC-SAW). This technology has already been tested for its ability to monitor quality of various commodities, including detection of deterioration in apple; ripeness and rot evaluation in mango; aroma profiling of thymus species; C(6) volatile compounds in grape berries; characterization of vegetable oil and detection of adulterants in virgin coconut oil. This system can perform the three major steps of aroma analysis: headspace sampling, separation of volatile compounds, and detection. In about one minute, the output, a chromatogram, is produced and, after a purging cycle, the instrument is ready for further analysis. The results obtained with the zNose can be compared to those of other gas-chromatographic systems by calculation of Kovats Indices (KI). Once the instrument has been tuned with an alkane standard solution, the retention times are automatically converted into KIs. However, slight changes in temperature and flow rate are expected to occur over time, causing retention times to drift. Also, depending on the polarity of the column stationary phase, the reproducibility of KI calculations can vary by several index units. A series of programs and graphical interfaces were therefore developed to compare calculated KIs among samples in a semi-automated fashion. These programs reduce the time required for chromatogram analysis of large data sets and minimize the potential for misinterpretation of the data when chromatograms are not perfectly aligned. We present a method for rapid volatile compound analysis in fruit. Sample preparation, data acquisition and handling procedures are also discussed.


Subject(s)
Fruit/chemistry , Volatile Organic Compounds/analysis , Chromatography, Gas/methods , Volatilization
2.
J Phys Chem B ; 115(49): 14484-92, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22004271

ABSTRACT

Solid-phase microextraction (SPME) sampling of the headspace above an aqueous micellar solution of sodium dodecyl sulfate (SDS) was shown to be effective for quantifying the equilibrium partitioning of limonene solute between water and SDS micellar aggregates. Concentrations in the headspace were determined from the amount absorbed by the SPME fiber during 1 min extractions, with the quantity on the fiber determined using gas chromatography/mass spectrometry (GC/MS). Headspace concentrations as a function of surfactant concentration were fit to a mass balance to yield the partition coefficient and critical micelle concentration. When the total limonene in the system was low enough that it could be completely dissolved by water in the absence of micelles, a constant value for the partition coefficient of 1700 M(-1) was obtained, independent of the limonene concentration. However, at higher total limonene concentrations, the partition coefficient became a function of the amount of limonene in the micelles, as confirmed by separate experiments in which either limonene or SDS concentration was varied. The observed increase in partition coefficient with increasing limonene likely signals a shift from micelles to swollen micelles and ultimately to microemulsion droplets. The effect of SDS concentration on the aqueous solubility limit of limonene could also be observed in HS-SPME experiments where either SDS or limonene was varied.


Subject(s)
Sodium Dodecyl Sulfate/chemistry , Cyclohexenes/chemistry , Gas Chromatography-Mass Spectrometry , Limonene , Micelles , Solid Phase Microextraction , Solutions/chemistry , Terpenes/chemistry
3.
Analyst ; 136(16): 3375-83, 2011 Aug 21.
Article in English | MEDLINE | ID: mdl-21727981

ABSTRACT

Hydrophobic compounds are important odorants and nutrients in foods and beverages, as well as environmental contaminants and pharmaceuticals. Factors influencing their partitioning within multi-component systems and/or from the bulk liquid phase to the air are critical for understanding aroma quality and nutrient bioavailability. The equilibrium partitioning of hydrophobic analytes between air and water was analyzed using solid phase microextraction (SPME) in the headspace (HS-SPME) and via direct immersion in the liquid (DI-SPME). The compounds studied serve as models for hydrophobic aroma compounds covering a range of air-water partition coefficients that extends over four orders of magnitude. By varying the total amount of analyte as well as the ratio of vapor to liquid in the closed, static system, the partition coefficient, K(vl), can be determined without the need for an external calibration, eliminating many potential systematic errors. K(vl) determination using DI-SPME in this manner has not been demonstrated before. There was good agreement between results determined by DI-SPME and by HS-SPME over the wide range of partitioning behavior studied. This shows that these two methods are capable of providing accurate, complementary measurements. Precision in K(vl) determination depends strongly on K(vl) magnitude and the ratio of the air and liquid phases.


Subject(s)
Gases/chemistry , Oils, Volatile/analysis , Solid Phase Microextraction/methods , Bicyclic Monoterpenes , Cyclohexenes/analysis , Cyclohexenes/isolation & purification , Gas Chromatography-Mass Spectrometry , Heptanes/analysis , Heptanes/isolation & purification , Ketones/analysis , Ketones/isolation & purification , Limonene , Octanes/analysis , Octanes/isolation & purification , Oils, Volatile/isolation & purification , Terpenes/analysis , Terpenes/isolation & purification , Water/chemistry
4.
J Colloid Interface Sci ; 356(1): 165-75, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21272891

ABSTRACT

The gradient diffusion of ionic sodium dodecyl sulfate micelles in agarose gel was investigated at moderate concentrations above the CMC. Of particular interest were the effects of micelle, gel, and sodium chloride concentration on the micelle diffusivity. Holographic interferometry was used to measure the gradient diffusion coefficient at three sodium chloride concentrations (0, 0.03, 0.10 M), three gel concentrations (0, 1, 2 wt%), and several surfactant concentrations. Time-resolved fluorescence quenching was used to measure aggregation numbers both in solution and gel. The micelle diffusivity increased linearly with surfactant concentration at the two larger sodium chloride concentrations and all gel concentrations. In general, the strength of this effect increased with decreasing sodium chloride concentration and increased with gel concentration. This behavior is evidence of decreasing micelle-micelle electrostatic interactions with increasing sodium chloride concentrations, and increasing excluded volume effects and hydrodynamic screening with increasing gel concentration, respectively. The only exception was at 0.1M sodium chloride and 2 wt% agarose, which showed a slight reduction in the slope compared to 1 wt% agarose. It was found that the concentration effect is quite strong for charged solutes: at a NaCl concentration of 0.03 M in a 2% agarose gel, in a solution with 3% SDS micelles by volume, the micelle diffusion coefficient is doubled relative to its value in the same gel at infinite dilution. The extrapolated, infinite-dilution diffusion coefficients and the rate at which the micelle diffusivity increased with surfactant concentration were compared with predictions of previously published theories in which the micelles are treated as charged, colloidal spheres and the gel as a Brinkman medium. The experimental data and theoretical predictions were in good agreement.


Subject(s)
Diffusion , Micelles , Sodium Dodecyl Sulfate/metabolism , Gels/chemistry , Hydrodynamics , Interferometry , Ions , Models, Theoretical , Pyrenes/metabolism , Sepharose/chemistry , Sodium Chloride/chemistry , Sodium Dodecyl Sulfate/chemistry , Solutions/chemistry , Spectrometry, Fluorescence , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...