Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.178
Filter
1.
MicroPubl Biol ; 20242024.
Article in English | MEDLINE | ID: mdl-38911437

ABSTRACT

Pixantrone and mitoxantrone are structurally related anticancer drugs which have been shown to generate covalent conjugates at apurinic/apyrimidinic (AP) sites in DNA. Mitoxantrone binding to AP sites induces DNA strand cleavage and inhibits the endonuclease activity of human AP endonuclease 1 (APE1). Here, pixantrone was demonstrated to have similar properties, but relative to mitoxantrone, it was significantly less potent in both DNA incision and APE1 inhibition. Consistent with these observations, pixantrone had ~ 15-fold lower affinity for DNA containing an AP site analogue, tetrahydrofuran, as measured by a Thiazole Orange (ThO) displacement assay.

2.
DNA Repair (Amst) ; 139: 103695, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795603

ABSTRACT

The base excision repair (BER) pathway is a precise and versatile mechanism of DNA repair that is initiated by DNA glycosylases. Endonuclease VIII-like 1 (NEIL1) is a bifunctional glycosylase/abasic site (AP) lyase that excises a damaged base and subsequently cleaves the phosphodiester backbone. NEIL1 is able to recognize and hydrolyze a broad range of oxidatively-induced base lesions and substituted ring-fragmented guanines, including aflatoxin-induced 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua). Due to NEIL1's protective role against these and other pro-mutagenic lesions, it was hypothesized that naturally occurring single nucleotide polymorphic (SNP) variants of NEIL1 could increase human risk for aflatoxin-induced hepatocellular carcinoma (HCC). Given that populations in South Asia experience high levels of dietary aflatoxin exposures and hepatitis B viral infections that induce oxidative stress, investigations on SNP variants of NEIL1 that occur in this region may have clinical implications. In this study, the most common South Asian variants of NEIL1 were expressed, purified, and functionally characterized. All tested variants exhibited activities and substrate specificities similar to wild type (wt)-NEIL1 on high-molecular weight DNA containing an array of oxidatively-induced base lesions. On short oligodeoxynucleotides (17-mers) containing either a site-specific apurinic/apyrimidinic (AP) site, thymine glycol (ThyGly), or AFB1-FapyGua, P206L-NEIL1 was catalytically comparable to wt-NEIL1, while the activities of NEIL1 variants Q67K and T278I on these substrates were ≈2-fold reduced. Variant T103A had a greatly diminished ability to bind to 17-mer DNAs, limiting the subsequent glycosylase and lyase reactions. Consistent with this observation, the rate of excision by T103A on 17-mer oligodeoxynucleotides containing ThyGly or AFB1-FapyGua could not be measured. However, the ability of T103A to excise ThyGly was improved on longer oligodeoxynucleotides (51-mers), with ≈7-fold reduced activity compared to wt-NEIL1. Our studies suggest that NEIL1 variant T103A may present a pathogenic phenotype that is limited in damage recognition, potentially increasing human risk for HCC.


Subject(s)
DNA Glycosylases , DNA Repair , Polymorphism, Single Nucleotide , DNA Glycosylases/metabolism , DNA Glycosylases/genetics , DNA Glycosylases/chemistry , Humans , Aflatoxin B1/metabolism , DNA Damage , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/enzymology , Substrate Specificity , Liver Neoplasms/genetics , Liver Neoplasms/enzymology
3.
Ann Bot ; 134(2): 351-364, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38702965

ABSTRACT

BACKGROUND AND AIMS: Desiccation tolerance (DT) is crucial for survival in arid environments, where organisms develop strategies in reproduction, maintenance and defence to cope with water scarcity. Therefore, investigating the relationship between reproduction and DT is essential to understand the ecology and adaptive strategies of species. This study explores the connection between the development of male and female gametangia in the moss Bryum argenteum and the decrease in DT during the progression of phenological phases in gametangia and protonema. METHODS: Samples collected from a dry tropical forest in Brazil were cultivated, cloned and subjected to desiccation. Subsequently, the physiological parameters of shoots and protonemata were analysed. Shoot and protonema regeneration were monitored for 28 d after the physiological analyses. Both phases were subjected to control and desiccation treatments. KEY RESULTS: Significant effects of desiccation and sex on the physiological parameters and regeneration capacity of shoots and protonemata were found. Male shoots generally exhibited lower values of Fv/Fm (quantum efficiency of photosystem II) and ϕPSII (effective quantum yield of photosystem II), while females demonstrated higher values and better recovery after desiccation. Protonemata also showed variation in Fv/Fm over time and with sex, with no significant differences in ϕPSII between them. Desiccated male shoots had higher mortality rates and produced fewer new shoots. For females, the regeneration patterns varied between the desiccation-exposed groups and the control, with decreased shoot production, and some protonemata growing into filaments without forming shoots. CONCLUSION: These findings improve our understanding of the ecological responses of bryophytes to desiccation stress and provide insights into their adaptive strategies in challenging environments, such as the possible rarity of males in dioicous moss populations.


Subject(s)
Desiccation , Adaptation, Physiological/physiology , Plant Shoots/physiology , Plant Shoots/growth & development , Bryopsida/physiology , Reproduction/physiology , Brazil
4.
NAR Mol Med ; 1(2): ugae006, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38779538

ABSTRACT

Increased risk for the development of hepatocellular carcinoma (HCC) is driven by a number of etiological factors including hepatitis viral infection and dietary exposures to foods contaminated with aflatoxin-producing molds. Intracellular metabolic activation of aflatoxin B1 (AFB1) to a reactive epoxide generates highly mutagenic AFB1-Fapy-dG adducts. Previously, we demonstrated that repair of AFB1-Fapy-dG adducts can be initiated by the DNA glycosylase NEIL1 and that male Neil1-/- mice were significantly more susceptible to AFB1-induced HCC relative to wild-type mice. To investigate the mechanisms underlying this enhanced carcinogenesis, WT and Neil1-/- mice were challenged with a single, 4 mg/kg dose of AFB1 and frequencies and spectra of mutations were analyzed in liver DNAs 2.5 months post-injection using duplex sequencing. The analyses of DNAs from AFB1-challenged mice revealed highly elevated mutation frequencies in the nuclear genomes of both males and females, but not the mitochondrial genomes. In both WT and Neil1-/- mice, mutation spectra were highly similar to the AFB1-specific COSMIC signature SBS24. Relative to wild-type, the NEIL1 deficiency increased AFB1-induced mutagenesis with concomitant elevated HCCs in male Neil1-/- mice. Our data establish a critical role of NEIL1 in limiting AFB1-induced mutagenesis and ultimately carcinogenesis.

5.
Chem Res Toxicol ; 37(4): 633-642, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38498000

ABSTRACT

Aflatoxin B1 (AFB1) is a potent human liver carcinogen produced by certain molds, particularly Aspergillus flavus and Aspergillus parasiticus, which contaminate peanuts, corn, rice, cottonseed, and ground and tree nuts, principally in warm and humid climates. AFB1 undergoes bioactivation in the liver to produce AFB1-exo-8,9-epoxide, which forms the covalently bound cationic AFB1-N7-guanine (AFB1-N7-Gua) DNA adduct. This adduct is unstable and undergoes base-catalyzed opening of the guanine imidazolium ring to form two ring-opened diastereomeric 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxy-aflatoxin B1 (AFB1-FapyGua) adducts. The AFB1 formamidopyrimidine (Fapy) adducts induce G → T transversion mutations and are likely responsible for the carcinogenic effects of AFB1. Quantitative liquid chromatography-mass spectrometry (LC-MS) methods have shown that AFB1-N7-Gua is eliminated in rodent and human urine, whereas ring-opened AFB1-FapyGua adducts persist in rodent liver. However, fresh frozen biopsy tissues are seldom available for biomonitoring AFB1 DNA adducts in humans, impeding research advances in this potent liver carcinogen. In contrast, formalin-fixed paraffin-embedded (FFPE) specimens used for histopathological analysis are often accessible for molecular studies. However, ensuring nucleic acid quality presents a challenge due to incomplete reversal of formalin-mediated DNA cross-links, which can preclude accurate quantitative measurements of DNA adducts. In this study, employing ion trap or high-resolution accurate Orbitrap mass spectrometry, we demonstrate that ring-opened AFB1-FapyGua adducts formed in AFB1-exposed newborn mice are stable to the formalin fixation and DNA de-cross-linking retrieval processes. The AFB1-FapyGua adducts can be detected at levels comparable to those in a match of fresh frozen liver. Orbitrap MS2 measurements can detect AFB1-FapyGua at a quantification limit of 4.0 adducts per 108 bases when only 0.8 µg of DNA is assayed on the column. Thus, our breakthrough DNA retrieval technology can be adapted to screen for AFB1 DNA adducts in FFPE human liver specimens from cohorts at risk of this potent liver carcinogen.


Subject(s)
Aflatoxin B1 , DNA Adducts , Mice , Humans , Animals , Aflatoxin B1/chemistry , Paraffin Embedding , DNA/metabolism , Carcinogens/metabolism , Mass Spectrometry , Guanine , Formaldehyde
7.
Environ Mol Mutagen ; 65 Suppl 1: 9-13, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37303259

ABSTRACT

Dietary exposure to aflatoxin B1 (AFB1) is a recognized risk factor for developing hepatocellular carcinoma. The mutational signature of AFB1 is characterized by high-frequency base substitutions, predominantly G>T transversions, in a limited subset of trinucleotide sequences. The 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua) has been implicated as the primary DNA lesion responsible for AFB1-induced mutations. This study evaluated the mutagenic potential of AFB1-FapyGua in four sequence contexts, including hot- and cold-spot sequences as apparent in the mutational signature. Vectors containing site-specific AFB1-FapyGua lesions were replicated in primate cells and the products of replication were isolated and sequenced. Consistent with the role of AFB1-FapyGua in AFB1-induced mutagenesis, AFB1-FapyGua was highly mutagenic in all four sequence contexts, causing G>T transversions and other base substitutions at frequencies of ~80%-90%. These data suggest that the unique mutational signature of AFB1 is not explained by sequence-dependent fidelity of replication past AFB1-FapyGua lesions.


Subject(s)
Liver Neoplasms , Mutagens , Animals , Mutagens/toxicity , Aflatoxin B1/toxicity , DNA Adducts/genetics , Guanine , Mutagenesis , Liver Neoplasms/pathology , Imidazoles/adverse effects
8.
DNA Repair (Amst) ; 133: 103606, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039951

ABSTRACT

Mitoxantrone (1,4-dihydroxy-5,8-bis[2-(2-hydroxyethylamino)ethylamino]-anthracene-9,10-dione) is a clinically-relevant synthetic anthracenedione that functions as a topoisomerase II poison by trapping DNA double-strand break intermediates. Mitoxantrone binds to DNA via both stacking interactions with DNA bases and hydrogen bonding with the sugar-phosphate backbone. It has been shown that mitoxantrone inhibits apurinic/apyrimidinic (AP) endonuclease 1 (APE1)-catalyzed incision of DNA containing a tetrahydrofuran (THF) moiety and more recently, that mitoxantrone forms Schiff base conjugates at AP sites in DNA. In this study, mitoxantrone-mediated inhibition of APE1 at THF sites was shown to be consistent with preferential binding to, and thermal stabilization of DNA containing a THF site as compared to non-damaged DNA. Investigations into the properties of mitoxantrone at AP and 3' α,ß-unsaturated aldehyde sites demonstrated that in addition to being a potent inhibitor of APE1 at these biologically-relevant substrates (∼ 0.5 µM IC50 on AP site-containing DNA), mitoxantrone also incised AP site-containing DNA by catalyzing ß- and ß/δ-elimination reactions. The efficiency of these reactions to generate the 3' α,ß-unsaturated aldehyde and 3' phosphate products was modulated by DNA structure. Although these cell-free reactions revealed that mitoxantrone can generate 3' phosphates, cells lacking polynucleotide kinase phosphatase did not show increased sensitivity to mitoxantrone treatment. Consistent with its ability to inhibit APE1 activity on DNAs containing either an AP site or a 3' α,ß-unsaturated aldehyde, combined exposures to clinically-relevant concentrations of mitoxantrone and a small molecule APE1 inhibitor revealed additive cytotoxicity. These data suggest that in a cellular context, mitoxantrone may interfere with APE1 DNA repair functions.


Subject(s)
DNA , Mitoxantrone , Mitoxantrone/pharmacology , DNA/metabolism , DNA Repair , Aldehydes , Phosphates , Endonucleases/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism
9.
Am J Bot ; 110(12): e16253, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37938812

ABSTRACT

PREMISE: Moss sporophytes differ strongly in size and biomass partitioning, potentially reflecting reproductive and dispersal strategies. Understanding how sporophyte traits are coordinated is essential for understanding moss functioning and evolution. This study aimed to answer: (1) how the size and proportions of the sporophyte differ between moss species with and without a prominent central strand in the seta, (2) how anatomical and morphological traits of the seta are related, and (3) how sporophytic biomass relates to gametophytic biomass and nutrient concentrations. METHODS: We studied the relationships between seta anatomical and morphological traits, the biomass of seta, capsule, and gametophyte, and carbon, nitrogen, and phosphorus concentrations of 27 subtropical montane moss species. RESULTS: (1) Moss species with a prominent central strand in the seta had larger setae and heavier capsules than those without a prominent strand. (2) With increasing seta length, setae became thicker and more rounded for both groups, while in species with a prominent central strand, the ratio of transport-cell area to epidermal area decreased. (3) In both groups, mosses with greater gametophytic biomass tended to have heavier sporophytes, but nitrogen and phosphorus concentrations in the gametophyte were unrelated to sporophytic traits. CONCLUSIONS: Our study highlights that the central strand in the seta may have an important functional role and affect the allometry of moss sporophytes. The coordinated variations in sporophyte morphological and anatomical traits follow basic biomechanical principles of cylinder-like structures, and these traits relate only weakly to the gametophytic nutrient concentrations. Research on moss sporophyte functional traits and their relationships to gametophytes is still in its infancy but could provide important insights into their adaptative strategies.


Subject(s)
Bryophyta , Bryopsida , Germ Cells, Plant , Bryophyta/anatomy & histology , Nitrogen , Phosphorus
10.
DNA Repair (Amst) ; 129: 103544, 2023 09.
Article in English | MEDLINE | ID: mdl-37517321

ABSTRACT

Nei-like glycosylase 1 (NEIL1) is a DNA repair enzyme that initiates the base excision repair (BER) pathway to cleanse the human genome of damage. The substrate specificity of NEIL1 includes several common base modifications formed under oxidative stress conditions, as well as the imidazole ring open adducts that are induced by alkylating agents following initial modification at N7 guanine. An example of the latter is the persistent and mutagenic 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua) adduct, resulting from the alkylating agent aflatoxin B1 (AFB1) exo-8-9-epoxide. Naturally occurring single nucleotide polymorphic (SNP) variants of NEIL1 are hypothesized to be associated with an increased risk for development of early-onset hepatocellular carcinoma (HCC), especially in environments with high exposures to aflatoxins and chronic inflammation from viral infections and alcohol consumption. Given that AFB1 exposures and hepatitis B viral (HBV) infections represent a major problem in the developing countries of sub-Saharan Africa, it is pertinent to study SNP NEIL1 variants that are present in this geographic region. In this investigation, we characterized the three most common NEIL1 variants found in this region: P321A, R323G, and I182M. Biochemical analyses were conducted to determine the proficiencies of these variants in initiating the repair of DNA lesions. Our data show that damage recognition and excision activities of P321A and R323G were near that of wild-type (WT) NEIL1 for both thymine glycol (ThyGly) and AFB1-FapyGua. The substrate specificities of these variants with respect to various oxidatively-induced base lesions were also similar to that of WT. In contrast, the I182M variant was unstable, such that it precipitated under a variety of conditions and underwent rapid inactivation at a biologically relevant temperature, with partial stabilization being observed in the presence of undamaged DNA. This study provides insight regarding the potential increased risk for early-onset HCC in human populations carrying the NEIL1 I182M variant.


Subject(s)
Carcinoma, Hepatocellular , DNA Glycosylases , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , DNA Glycosylases/metabolism , Mutagenesis , Nucleotides , DNA Repair
11.
Genes Brain Behav ; 22(4): e12849, 2023 08.
Article in English | MEDLINE | ID: mdl-37328946

ABSTRACT

Relationships between novel phenotypic behaviors and specific genetic alterations are often discovered using target-specific, directed mutagenesis or phenotypic selection following chemical mutagenesis. An alternative approach is to exploit deficiencies in DNA repair pathways that maintain genetic integrity in response to spontaneously induced damage. Mice deficient in the DNA glycosylase NEIL1 show elevated spontaneous mutations, which arise from translesion DNA synthesis past oxidatively induced base damage. Several litters of Neil1 knockout mice included animals that were distinguished by their backwards-walking behavior in open-field environments, while maintaining frantic forward movements in their home cage environment. Other phenotypic manifestations included swim test failures, head tilting and circling. Mapping of the mutation that conferred these behaviors showed the introduction of a stop codon at amino acid 4 of the Ush1g gene. Ush1gbw/bw null mice displayed auditory and vestibular defects that are commonly seen with mutations affecting inner-ear hair-cell function, including a complete lack of auditory brainstem responses and vestibular-evoked potentials. As in other Usher syndrome type I mutant mouse lines, hair cell phenotypes included disorganized and split hair bundles, as well as altered distribution of proteins for stereocilia that localize to the tips of row 1 or row 2. Disruption to the bundle and kinocilium displacement suggested that USH1G is essential for forming the hair cell's kinocilial links. Consistent with other Usher type 1 models, Ush1gbw/bw mice had no substantial retinal degeneration compared with Ush1gbw /+ controls. In contrast to previously described Ush1g alleles, this new allele provides the first knockout model for this gene.


Subject(s)
DNA Glycosylases , Usher Syndromes , Mice , Animals , Alleles , Usher Syndromes/genetics , Mutation , Phenotype , DNA Glycosylases/genetics
12.
ACS Omega ; 8(16): 14841-14854, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37125130

ABSTRACT

Aflatoxin B1 (AFB1) exposure through contaminated food is a primary contributor to hepatocellular carcinogenesis worldwide. Hepatitis B viral infections in livers dramatically increase the carcinogenic potency of AFB1 exposures. Liver cytochrome P450 oxidizes AFB1 to the epoxide, which in turn reacts with N7-guanine in DNA, producing the cationic trans-8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 adduct (AFB1-N7-Gua). The opening of the imidazole ring of AFB1-N7-Gua under physiological conditions causes the formation of the cis- and trans-diastereomers of 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua). These adducts primarily lead to G → T mutations, with AFB1-FapyGua being significantly more mutagenic than AFB1-N7-Gua. The unequivocal identification and accurate quantification of these AFB1-Gua adducts as biomarkers are essential for a fundamental understanding and prevention of AFB1-induced hepatocellular carcinogenesis. Among a variety of analytical techniques used for this purpose, liquid chromatography-tandem mass spectrometry, with the use of the stable isotope-labeled analogues of AFB1-FapyGua and AFB1-N7-Gua as internal standards, provides the greatest accuracy and sensitivity. cis-AFB1-FapyGua-15N5, trans-AFB1-FapyGua-15N5, and AFB1-N7-Gua-15N5 have been synthesized and used successfully as internal standards. However, the availability of these standards from either academic institutions or commercial sources ceased to exist. Thus, quantitative genomic data regarding AFB1-induced DNA damage in animal models and humans remain challenging to obtain. Previously, AFB1-N7-Gua-15N5 was prepared by reacting AFB1-exo-8,9-epoxide with the uniformly 15N5-labeled DNA isolated from algae grown in a pure 15N-environment, followed by alkali treatment, resulting in the conversion of AFB1-N7-Gua-15N5 to AFB1-FapyGua-15N5. In the present work, we used a different and simpler approach to synthesize cis-AFB1-FapyGua-15N5, trans-AFB1-FapyGua-15N5, and AFB1-N7-Gua-15N5 from a partial double-stranded 11-mer Gua-15N5-labeled oligodeoxynucleotide, followed by isolation and purification. We also show the validation of these 15N5-labeled standards for the measurement of cis-AFB1-FapyGua, trans-AFB1-FapyGua, and AFB1-N7-Gua in DNA of livers of AFB1-treated mice.

13.
Nucleic Acids Res ; 51(8): 3754-3769, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37014002

ABSTRACT

The N-(2-deoxy-d-erythro-pentofuranosyl)-urea DNA lesion forms following hydrolytic fragmentation of cis-5R,6S- and trans-5R,6R-dihydroxy-5,6-dihydrothymidine (thymine glycol, Tg) or from oxidation of 7,8-dihydro-8-oxo-deoxyguanosine (8-oxodG) and subsequent hydrolysis. It interconverts between α and ß deoxyribose anomers. Synthetic oligodeoxynucleotides containing this adduct are efficiently incised by unedited (K242) and edited (R242) forms of the hNEIL1 glycosylase. The structure of a complex between the active site unedited mutant CΔ100 P2G hNEIL1 (K242) glycosylase and double-stranded (ds) DNA containing a urea lesion reveals a pre-cleavage intermediate, in which the Gly2 N-terminal amine forms a conjugate with the deoxyribose C1' of the lesion, with the urea moiety remaining intact. This structure supports a proposed catalytic mechanism in which Glu3-mediated protonation of O4' facilitates attack at deoxyribose C1'. The deoxyribose is in the ring-opened configuration with the O4' oxygen protonated. The electron density of Lys242 suggests the 'residue 242-in conformation' associated with catalysis. This complex likely arises because the proton transfer steps involving Glu6 and Lys242 are hindered due to Glu6-mediated H-bonding with the Gly2 and the urea lesion. Consistent with crystallographic data, biochemical analyses show that the CΔ100 P2G hNEIL1 (K242) glycosylase exhibits a residual activity against urea-containing dsDNA.


Subject(s)
DNA Glycosylases , DNA Repair , Deoxyribose , Urea , Deoxyribose/chemistry , DNA/chemistry , DNA Damage , DNA Glycosylases/metabolism , Humans
14.
Am J Ophthalmol ; 245: 102-114, 2023 01.
Article in English | MEDLINE | ID: mdl-36103900

ABSTRACT

PURPOSE: To analyze microtopography of 5 reusable Drysdale nucleus manipulator (DNM) paddled tips for sharp defects and evaluate their elemental composition to determine probable source, investigating 2 instruments (DNM 1 and 4) implicated in causing posterior capsule rupture (PCR) and 3 instruments with sharp edges identified by finger-tip interrogation intraoperatively. DESIGN: Experimental laboratory investigation. METHODS: DNM paddled tips were analyzed using scanning electron microscopy (SEM) to evaluate for sharp surface defects (number, dimensions), and subsequently energy dispersive x-ray spectroscopy (EDS) performed on sharp defects to determine their elemental composition. RESULTS: All reused DNMs analyzed (5 of 5) had significant structural defects on SEM analysis including sharp burrs, cavities and indentations, surface debris or residues, and roughening, compared to the new instrument (DNM 3, control) which had no defects. DNM 1 had 2 sharp defects, a larger 14 × 76-µm one and a craterlike 167 × 220-µm defect containing debris. EDS found that DNM 2 had 3 of 4 burrs composed mainly of carbon, the fourth of mixed composition (calcium, sulfur, oxygen); DNM 4 had 1 small burr, EDS significant for carbon; DNM 5 had 3 prominent burrs, the largest of 20 × 28 µm, 2 composed of aluminum, and some carbon residue. DNM 6 had 1 burr composed of aluminum and 3 prominent cavity defects, the largest covering 781 µm2. CONCLUSION: Reusable DNMs are widely used in cataract surgery. Sharp carbon- or aluminum-containing burrs were detected on all reused instruments analyzed together with 1 burr of mixed composition, originating from (1) organic residues, (2) instrument fragments, or (3) salt and contaminant deposits. Sharp defects may contribute to capsular damage including PCR, and residues may pose other safety concerns. Therefore, we support development of a quality, reliable single-use alternative instrument and further encourage careful inspection of all reusable instruments principally by finger-tip interrogation for sharp edges preuse.


Subject(s)
Aluminum , Carbon , Humans , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission
15.
Ocul Surf ; 27: 16-29, 2023 01.
Article in English | MEDLINE | ID: mdl-36586668

ABSTRACT

Rho kinase inhibitors (ROCKi) have attracted growing multidisciplinary interest, particularly in Ophthalmology where the question as to how they promote corneal endothelial healing remains unresolved. Concurrently, stem cell biology has rapidly progressed in unravelling drivers of stem cell (SC) proliferation and differentiation, where mechanical niche factors and the actin cytoskeleton are increasingly recognized as key players. There is mounting evidence from the study of the peripheral corneal endothelium that supports the likelihood of an internal limbal stem cell niche. The possibility that ROCKi stimulate the endothelial SC niche has not been addressed. Furthermore, there is currently a paucity of data that directly evaluates whether ROCKi promotes corneal endothelial healing by acting on this limbal SC niche located near the transition zone. Therefore, we performed a systematic review examining the effects ROCKi on the proliferation and differentiation of human somatic SC, to provide insight into its effects on various human SC populations. An appraisal of electronic searches of four databases identified 1 in vivo and 58 in vitro studies (36 evaluated proliferation while 53 examined differentiation). Types of SC studied included mesenchymal (n = 32), epithelial (n = 11), epidermal (n = 8), hematopoietic and other (n = 8). The ROCK 1/2 selective inhibitor Y-27632 was used in almost all studies (n = 58), while several studies evaluated ≥2 ROCKi (n = 4) including fasudil, H-1152, and KD025. ROCKi significantly influenced human somatic SC proliferation in 81% of studies (29/36) and SC differentiation in 94% of studies (50/53). The present systemic review highlights that ROCKi are influential in regulating human SC proliferation and differentiation, and provides evidence to support the hypothesis that ROCKi promotes corneal endothelial division and maintenance via acting on the inner limbal SC niche.


Subject(s)
Adult Stem Cells , Epithelium, Corneal , Limbus Corneae , Humans , Endothelium, Corneal/metabolism , Limbal Stem Cells , Cell Differentiation , Cell Proliferation , Epithelium, Corneal/metabolism , Stem Cell Niche
16.
Front Psychiatry ; 13: 1006024, 2022.
Article in English | MEDLINE | ID: mdl-36339880

ABSTRACT

Transgender and gender diverse (TGD) are terms that refer to individuals whose gender identity differs from sex assigned at birth. TGD individuals may choose any variety of modifications to their gender expression including, but not limited to changing their name, clothing, or hairstyle, starting hormones, or undergoing surgery. Starting in the 1950s, surgeons and endocrinologists began treating what was then known as transsexualism with cross sex hormones and a variety of surgical procedures collectively known as sex reassignment surgery (SRS). Soon after, Harry Benjamin began work to develop standards of care that could be applied to these patients with some uniformity. These guidelines, published by the World Professional Association for Transgender Health (WPATH), are in their 8th iteration. Through each iteration there has been a requirement that patients requesting gender-affirming hormones (GAH) or gender-affirming surgery (GAS) undergo one or more detailed evaluations by a mental health provider through which they must obtain a "letter of readiness," placing mental health providers in the role of gatekeeper. WPATH specifies eligibility criteria for gender-affirming treatments and general guidelines for the content of letters, but does not include specific details about what must be included, leading to a lack of uniformity in how mental health providers approach performing evaluations and writing letters. This manuscript aims to review practices related to evaluations and letters of readiness for GAS in adults over time as the standards of care have evolved via a scoping review of the literature. We will place a particular emphasis on changing ethical considerations over time and the evolution of the model of care from gatekeeping to informed consent. To this end, we did an extensive review of the literature. We identified a trend across successive iterations of the guidelines in both reducing stigma against TGD individuals and shift in ethical considerations from "do no harm" to the core principle of patient autonomy. This has helped reduce barriers to care and connect more people who desire it to gender affirming care (GAC), but in these authors' opinions does not go far enough in reducing barriers.

17.
DNA Repair (Amst) ; 117: 103372, 2022 09.
Article in English | MEDLINE | ID: mdl-35870279

ABSTRACT

Base excision repair is the major pathway for the repair of oxidatively-induced DNA damage, with DNA glycosylases removing modified bases in the first step. Human NTHL1 is specific for excision of several pyrimidine- and purine-derived lesions from DNA, with loss of function NTHL1 showing a predisposition to carcinogenesis. A rare single nucleotide polymorphism of the Nthl1 gene leading to the substitution of Asp239 with Tyr within the active site, occurs within global populations. In this work, we overexpressed and purified the variant NTHL1-Asp239Tyr (NTHL1-D239Y) and determined the substrate specificity of this variant relative to wild-type NTHL1 using gas chromatography-tandem mass spectrometry with isotope-dilution, and oxidatively-damaged genomic DNA containing multiple pyrimidine- and purine-derived lesions. Wild-type NTHL1 excised seven DNA base lesions with different efficiencies, whereas NTHL1-D239Y exhibited no glycosylase activity for any of these lesions. We also measured the activities of human glycosylases OGG1 and NEIL1, and E. coli glycosylases Nth and Fpg under identical experimental conditions. Different substrate specificities among these DNA glycosylases were observed. When mixed with NTHL1-D239Y, the activity of NTHL1 was not reduced, indicating no substrate binding competition. These results and the inactivity of the variant D239Y toward the major oxidatively-induced DNA lesions points to the importance of the understanding of this variant's role in carcinogenesis and the potential of individual susceptibility to cancer in individuals carrying this variant.


Subject(s)
DNA Glycosylases , Carcinogenesis , DNA/metabolism , DNA Damage , DNA Glycosylases/metabolism , DNA Repair , Deoxyribonuclease (Pyrimidine Dimer)/genetics , Deoxyribonuclease (Pyrimidine Dimer)/metabolism , Escherichia coli/genetics , Genomics , Humans , Purines , Pyrimidines/metabolism , Substrate Specificity
18.
Water Sci Technol ; 85(10): 2840-2853, 2022 May.
Article in English | MEDLINE | ID: mdl-35638791

ABSTRACT

Digital Twins (DTs) are on the rise as innovative, powerful technologies to harness the power of digitalisation in the WRRF sector. The lack of consensus and understanding when it comes to the definition, perceived benefits and technological needs of DTs is hampering their widespread development and application. Transitioning from traditional WRRF modelling practice into DT applications raises a number of important questions: When is a model's predictive power acceptable for a DT? Which modelling frameworks are most suited for DT applications? Which data structures are needed to efficiently feed data to a DT? How do we keep the DT up to date and relevant? Who will be the main users of DTs and how to get them involved? How do DTs push the water sector to evolve? This paper provides an overview of the state-of-the-art, challenges, good practices, development needs and transformative capacity of DTs for WRRF applications.

19.
Pediatr Cardiol ; 43(8): 1838-1847, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35556153

ABSTRACT

This study assesses self-report of transition readiness among adolescents and young adults (ages 12-25 years) with childhood and congenital heart disease (CHD), receiving care at Hasbro Children's Hospital, whose CHD diagnosis warranted transfer to adult cardiology care. Patients were mailed the American Academy of Pediatrics/American College of Physicians Transition Readiness for Youth Assessment survey. Confidence scores ranged between 0 (not) and 10 (very). Mann-Whitney U test was used to assess differences in scores between younger (12-17 years) and older (18-25 years) groups. 396 patients met inclusion criteria; 88 surveys were returned. Half of respondents were in the older group. While most respondents felt empowered to take charge of their own health and equally confident about moving to adult care, this did not always translate to actual knowledge. Younger patients had statistically significant lower knowledge scores in these metrics. Aspects of care with low scores include medication refills, communication with primary care team, and the lifelong need for cardiology follow up and health insurance. This discrepancy between self-report and actual knowledge highlights the need for more varied and age appropriate interventions to help patients navigate a complex healthcare system. A concrete approach to acquire the knowledge necessary to ensure successful transfer to adult cardiology care should be a focus.


Subject(s)
Cardiology , Heart Defects, Congenital , Transition to Adult Care , Young Adult , Adolescent , Child , Humans , Adult , Self Concept , Heart Defects, Congenital/therapy , Surveys and Questionnaires
20.
Appl Plant Sci ; 10(2): e11467, 2022.
Article in English | MEDLINE | ID: mdl-35495199

ABSTRACT

Premise: In dioicous mosses, sex is determined by a single U (female, ♀) or V (male, ♂) chromosome. Although a 1 : 1 sex ratio is expected following meiosis, phenotypic sex ratios based on the production of gametangia are often female-biased. The dryland moss Syntrichia caninervis (Pottiaceae) is notable for its low frequency of sex expression and strong phenotypic female bias. Here we present a technique to determine genotypic sex in a single shoot of S. caninervis, and report results of a case study examining genotypic and phenotypic sex ratios. Methods: We reanalyzed 271 non-expressing gametophyte shoots from a previous study on S. caninervis sex expression across microhabitats using a restriction fragment length polymorphism (RFLP) method. Results: We recovered a genotypic sex ratio in non-expressing shoots of 18.4♀ : 1♂, which exceeds the female bias of the phenotypic ratio (5.3♀ : 1♂; P = 0.013). We also found that the distribution of male and female genotypes across microsites with different levels of sun exposure was not predicted by patterns of sex expression in these microsites. Discussion: These findings contribute to our understanding of how the environment may modulate sex ratios in S. caninervis, either through its direct influence on sex expression or through selection on genotypes with particular sex expression phenotypes.

SELECTION OF CITATIONS
SEARCH DETAIL
...