Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Res ; 37(12): 233, 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33123802

ABSTRACT

PURPOSE: To use physiologically-based pharmacokinetic (PBPK) modelling to explore the food effect of different DNX hydrobromide (HBr) hemihydrate salt tablet formulations using biorelevant dissolution. METHODS: Compendial dissolution using a paddle method and TIM-1 biorelevant dissolution were performed and incorporated into a previously reported PBPK model. A two-part clinical study evaluated tablet formulations in the fasted/fed (high fat) state (Part A), and the impact of food (fasted/normal/high fat) and Proton Pump Inhibitor (PPI) co-administration for a selected formulation; as well as a formulation containing DNX HBr in the monohydrate state (Part B). RESULTS: TIM-1 data showed that the fed state bioaccessibility of DNX was significantly decreased compared to the fasted state with no significant differences between formulations. Dosed with normal/high fat food the selected formulation showed comparable exposure and a modest increase in DNX systemic PK was observed with PPI dependent on meal type. Under fed conditions DNX systemic exposure was comparable for the monohydrate and hemihydrate formulations. The integration of biorelevant TIM-1 data into the PBPK model led to the successful simulation of a DNX negative food effect. CONCLUSIONS: Interactions between DNX and food components are the likely the source of the negative food effect via micellar entrapment, ion pairing and/or meal induced viscosity changes.


Subject(s)
Food-Drug Interactions , Models, Biological , Piperidines/pharmacokinetics , Sulfones/pharmacokinetics , Administration, Oral , Aged , Aged, 80 and over , Biological Availability , Computer Simulation , Cross-Over Studies , Fasting , Female , Gastric Emptying , Healthy Volunteers , Humans , Intestinal Absorption , Male , Piperidines/administration & dosage , Proton Pump Inhibitors/administration & dosage , Proton Pump Inhibitors/pharmacokinetics , Sulfones/administration & dosage , Tablets
2.
Eur J Pharm Biopharm ; 117: 224-231, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28385615

ABSTRACT

The natural variability of gastric pH or gastric acid reducing medications can result in lower and more variable clinical pharmacokinetics for basic compounds in patient populations. Progressing alternative salt forms with improved solubility and dissolution properties can minimise this concern. This manuscript outlines a nonclinical approach comprising multiple biopharmaceutical, in vitro and physiologically based pharmacokinetic model (PBPK) modelling studies to enable selection of an alternative salt form for danirixin (DNX, GSK1325756), a pharmaceutical agent being developed for chronic obstructive pulmonary disease (COPD). The hydrobromide salt of DNX was identified as having superior biopharmaceutical properties compared to the free base (FB) form in clinical development and the impact of switching to the hydrobromide salt (HBr) was predicted by integrating the nonclinical data in a PBPK model (using GastroPlus™) to enable simulation of clinical drug exposure with FB and HBr salts in the absence and presence of a gastric acid reducing comedication (omeprazole, a proton pump inhibitor (PPI)). Subsequent investigation of DNX pharmacokinetics in a Phase 1 clinical study comparing FB with HBr salt forms confirmed that DNX HBr had reduced the variability of drug exposure and that exposure was not affected by PPI co-administration with DNX HBr. This case study therefore adds to the surprisingly few examples of a more soluble salt of a weak base translating to an improvement in human pharmacokinetics and illustrates a clear clinical benefit of salt selection during drug development.


Subject(s)
Hydrobromic Acid/blood , Hydrobromic Acid/chemistry , Piperidines/blood , Piperidines/chemistry , Sulfones/blood , Sulfones/chemistry , Administration, Oral , Aged , Aged, 80 and over , Cross-Over Studies , Female , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Humans , Hydrobromic Acid/administration & dosage , Male , Piperidines/administration & dosage , Sulfones/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...