Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4073, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769302

ABSTRACT

Vivid structural colours in butterflies are caused by photonic nanostructures scattering light. Structural colours evolved for numerous biological signalling functions and have important technological applications. Optically, such structures are well understood, however insight into their development in vivo remains scarce. We show that actin is intimately involved in structural colour formation in butterfly wing scales. Using comparisons between iridescent (structurally coloured) and non-iridescent scales in adult and developing H. sara, we show that iridescent scales have more densely packed actin bundles leading to an increased density of reflective ridges. Super-resolution microscopy across three distantly related butterfly species reveals that actin is repeatedly re-arranged during scale development and crucially when the optical nanostructures are forming. Furthermore, actin perturbation experiments at these later developmental stages resulted in near total loss of structural colour in H. sara. Overall, this shows that actin plays a vital and direct templating role during structural colour formation in butterfly scales, providing ridge patterning mechanisms that are likely universal across lepidoptera.


Subject(s)
Actin Cytoskeleton , Actins , Butterflies , Pigmentation , Wings, Animal , Animals , Butterflies/metabolism , Butterflies/physiology , Butterflies/ultrastructure , Wings, Animal/ultrastructure , Wings, Animal/metabolism , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Actins/metabolism , Color , Animal Scales/metabolism , Animal Scales/ultrastructure
2.
Philos Trans R Soc Lond B Biol Sci ; 377(1855): 20200505, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35634924

ABSTRACT

Structural colours, produced by the reflection of light from ultrastructures, have evolved multiple times in butterflies. Unlike pigmentary colours and patterns, little is known about the genetic basis of these colours. Reflective structures on wing-scale ridges are responsible for iridescent structural colour in many butterflies, including the Müllerian mimics Heliconius erato and Heliconius melpomene. Here, we quantify aspects of scale ultrastructure variation and colour in crosses between iridescent and non-iridescent subspecies of both of these species and perform quantitative trait locus (QTL) mapping. We show that iridescent structural colour has a complex genetic basis in both species, with offspring from crosses having a wide variation in blue colour (both hue and brightness) and scale structure measurements. We detect two different genomic regions in each species that explain modest amounts of this variation, with a sex-linked QTL in H. erato but not H. melpomene. We also find differences between species in the relationships between structure and colour, overall suggesting that these species have followed different evolutionary trajectories in their evolution of structural colour. We then identify genes within the QTL intervals that are differentially expressed between subspecies and/or wing regions, revealing likely candidates for genes controlling structural colour formation. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.


Subject(s)
Butterflies , Animals , Butterflies/genetics , Chromosome Mapping , Color , Pigmentation/genetics , Wings, Animal
3.
Curr Opin Genet Dev ; 69: 28-34, 2021 08.
Article in English | MEDLINE | ID: mdl-33540167

ABSTRACT

Butterflies display some of the most striking examples of structural colour in nature. These colours originate from cuticular scales that cover the wing surface, which have evolved a diverse suite of optical nanostructures capable of manipulating light. In this review we explore recent advances in the evolution of structural colour in butterflies. We discuss new insights into the underlying genetics and development of the structural colours in various nanostructure types. Improvements in -omic and imaging technologies have been paramount to these new advances and have permitted an increased appreciation of their development and evolution.


Subject(s)
Biological Evolution , Butterflies/anatomy & histology , Pigmentation/genetics , Wings, Animal/anatomy & histology , Animals , Butterflies/genetics , Butterflies/ultrastructure , Color , Microscopy, Electron, Scanning , Phenotype , Wings, Animal/ultrastructure
5.
Biores Open Access ; 8(1): 169-184, 2019.
Article in English | MEDLINE | ID: mdl-31681507

ABSTRACT

Bisphenol A (BPA) is a polymerizing agent commonly found in plastics that has been linked to xenoestrogenic activity. In this study, we analyzed the estrogen-like effects of BPA on the expression of estrogen receptor (ER)α and p53 with hormonal and antihormonal treatments in T-47D and MCF-7 cells. Cells were cultured in medium containing 5% charcoal-stripped fetal bovine serum for 6 days to deplete any endogenous steroids or effectors. The cells were then treated for 24 h with 600 nM BPA, which was determined to be the optimal value by a concentration study of BPA from 1 nM to 2 µM. Extracted cellular proteins were quantified and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)/Western blot analysis. The cell proliferation assays were quantified upon exposure to BPA. Laser confocal microscopy was performed to determine the cytolocalization of p53 and ERα upon treatment with BPA. Western blot analysis revealed that BPA caused an increase in the cellular protein p53 in a concentration-dependent manner. While treatment with BPA did not affect the cytolocalization of p53, an increase in cell proliferation was observed. Our studies provide interesting leads to delineate the possible mechanistic relationship among BPA, ER, and tumor suppressor proteins in breast cancer cells.

6.
Evodevo ; 10: 19, 2019.
Article in English | MEDLINE | ID: mdl-31428299

ABSTRACT

BACKGROUND: Vertebrates possess a diverse range of integumentary epithelial appendages, including scales, feathers and hair. These structures share extensive early developmental homology, as they mostly originate from a conserved anatomical placode. In the context of avian epithelial appendages, feathers and scutate scales are known to develop from an anatomical placode. However, our understanding of avian reticulate (footpad) scale development remains unclear. RESULTS: Here, we demonstrate that reticulate scales develop from restricted circular domains of thickened epithelium, with localised conserved gene expression in both the epithelium and underlying mesenchyme. These domains constitute either anatomical placodes, or circular initiatory fields (comparable to the avian feather tract). Subsequent patterning of reticulate scales is consistent with reaction-diffusion (RD) simulation, whereby this primary domain subdivides into smaller secondary units, which produce individual scales. In contrast, the footpad scales of a squamate model (the bearded dragon, Pogona vitticeps) develop synchronously across the ventral footpad surface. CONCLUSIONS: Widely conserved gene signalling underlies the initial development of avian reticulate scales. However, their subsequent patterning is distinct from the footpad scale patterning of a squamate model, and the feather and scutate scale patterning of birds. Therefore, we suggest reticulate scales are a comparatively derived epithelial appendage, patterned through a modified RD system.

7.
Article in English | MEDLINE | ID: mdl-30858726

ABSTRACT

BACKGROUND: Black cohosh (BC) is an herbal remedy often used by women to treat symptoms associated with menopause. Research has shown that the molecular activity of BC is associated with estrogen receptor alpha (ER-α) regulation. Progesterone receptor (PR) expression is found to be consistent with ER expression and mutations in the BRCA1 gene, a tumor-suppressor gene, are known to be responsible for about 40%-45% of hereditary breast cancers. PURPOSE: The objective of this study was to determine the effects of BC alone, as well as in combination with hormones and antihormones, on cell viability and expression of ER-α, PR, and BRCA1 in both T-47D and MCF-7 cell lines. METHODS: Cells were cultured in charcoal-stripped serum prior to their treatment and subsequent protein extraction. Western blot analyses were performed following a Bio-Rad Bradford protein assay and SDS-PAGE gel electrophoresis, with ECL luminescence and Image Studio Lite software. Cellular viability assays were performed using propidium iodine (PI) staining, and the distribution of fluorescent structures was evaluated through confocal microscopy. RT-qPCR analysis was performed on extracted cellular RNA. All statistical analyses were performed using SPSS software, and data was subjected to Kruskal-Wallis testing, followed by post-hoc analysis using the Mann-Whitney U-test to determine the statistical significance of all findings. RESULTS: Western blot analysis displayed significant alterations of ER-α, PR, and BRCA1 protein levels after 24-hour treatment with 80-500 µM BC. BC displayed a concentration-dependent decrease on ER-α and BRCA1 expression, with an 87% reduction of ER-α expression and a 43% of BRCA1 expression in T-47D cells compared to control. After six days of treatment with 400 µM BC, a 50% decrease in cell proliferation was observed. Following 24 hours of co-treatment with 400 µM BC and 10 nM E2, ER-α was downregulated by 90% and BRCA1 expression was reduced by 70% compared to control. The expression of PR, following the same treatment, exhibited similar effects. The proliferative effect of E2 was reduced in the presence of BC. CONCLUSION: Black Cohosh demonstrates substantial anti-cancer properties, and this study may significantly aid in the understanding of the molecular effects of BC on ER-α, PR, and BRCA1 in breast cancer cells.

8.
Article in English | MEDLINE | ID: mdl-29403307

ABSTRACT

The North American plant Cimicifuga racemosa, also known as black cohosh (BC), is a herb that recently has gained attention for its hormonal effects. As the usage of hormone replacement therapy is declining due to its adverse effects in women with cancer, many are turning to herbal remedies like BC to treat menopausal symptoms. It is crucial to determine whether the effects of BC involve estrogen receptor-alpha (ERα). Previous studies from our laboratory have shown ERα to be a possible molecular target for BC. In this study, we examined the effects of BC (8% triterpene glycosides) alone and in combination with hormones and antihormones on the cellular viability, expression of ERα and progesterone receptor (PR)-A/B, and cytolocalization of ERα in ER (+) and PR-A/B (+) T-47D breast cancer cells. Cells were cultured and proteins were extracted and quantified. Western blot analysis revealed alterations in the expression of ERα and PR after treatment with BC (5-100 µM). BC induced a concentration-dependent decrease in ERα and PR protein levels when compared to the control. Image cytometric analysis with propidium iodide staining was used to enumerate changes in T-47D cell number and viability. A decrease in T-47D cell viability was observed upon treatment with 5-100 µM BC. The ideal concentration of BC (100 µM) was used in combination with hormones and antihormones in an effort to further understand the possible similarities between this compound and other known effectors of ERα and PR. After a 24-hour concomitant treatment with and/or in combination of BC, estradiol, ICI 182, 780, and Tamoxifen, downregulation of ERα and PR protein levels was observed. Delineating the role of BC in the regulation of ERα, PR, as well as its mechanisms of action, may be important in understanding the influence of BC on hormone receptors in breast cancer.

9.
Biores Open Access ; 6(1): 141-150, 2017.
Article in English | MEDLINE | ID: mdl-29098120

ABSTRACT

The atrial natriuretic peptide (ANP) hormone is secreted by cardiac atrial myocytes and acts to regulate blood pressure homeostasis in humans. Previous research indicates ANP treatment significantly decreases the proliferation of human prostate cancer cells, pancreatic adenocarcinoma, and breast cancer cells. Minimal studies have been conducted with regard to ANP regulating tumor suppressor genes and steroid hormone receptors in breast cancer cells. Our study analyzed the effects of ANP in combination with 17ß-estradiol (E2) and antiestrogen treatments on p53 and ERα levels in T-47D breast cancer cells. Preliminary studies through Western blot analysis showed that ANP treatment decreases p53 and ERα expression levels in a concentration-dependent (10-100 nM) manner. Treatment with ANP alone, at a 100 nM concentration, causes a decrease of p53 and ERα expression compared with Cs (control stripped), but with E2 and antiestrogen combinations, expression of both protein levels decreased compared with treatments without ANP. Combined treatment with E2, an estrogen antagonist, and ANP decreased cellular proliferation compared with treatments without ANP, except in the case of raloxifene (RAL). Our studies indicate that ANP has potential as a therapeutic breast cancer treatment and should inspire further studies on the molecular mechanism of ANP in T-47D breast cancer cells.

10.
Article in English | MEDLINE | ID: mdl-28579831

ABSTRACT

It has been reported that phytoestrogen epigallocatechin gallate (EGCG) suppresses cancer cell proliferation and may have antitumor properties. In this study, we analyzed the effects of EGCG on estrogen receptor α (ERα) and progesterone receptor in hormone-dependent T-47D breast cancer cells. Western blot analysis revealed EGCG induced a concentration-dependent decrease in ERα protein levels, with a 56% reduction occurring with 60 µM EGCG when compared to controls. Downregulation of ERα protein levels was observed after 24-hour co-treatment of T-47D cells with 60 µM EGCG and 10 nM 17ß-estradiol (E2). The proliferative effect of E2 on cell viability was reversed when treated in combination with EGCG. In contrast, the combination of EGCG with the pure ER antagonist, ICI 182, 780, showed no further reduction in cell number as only 5% of the cells were viable after 6 days of treatment. These studies may provide further understanding of the interactions among flavonoids and steroid receptors in breast cancer cells.

11.
Article in English | MEDLINE | ID: mdl-28331366

ABSTRACT

Curcumin (CUR) is a compound that has antibacterial, antiviral, anti-inflammatory, and anticancer properties. In this study, we have analyzed the effects of CUR on the expression of ERα and p53 in the presence of hormones and anti-hormones in breast cancer cells. Cells were cultured in a medium containing charcoal-stripped fetal bovine serum to deplete any endogenous steroids and treated with CUR at varying concentrations or in combination with hormones and anti-hormones. Protein analysis revealed a relative decrease in the levels of p53 and ERα upon treatment with 5-60 µM CUR. In cell proliferation studies, CUR alone caused a 10-fold decrease compared with the treatment with estrogen, which suggests its antiproliferative effects. Delineating the role of CUR in the regulation of p53, ERα, and their mechanisms of action may be important in understanding the influence of CUR on tumor suppressors and hormone receptors in breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...