Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21266166

ABSTRACT

We estimate the potential remaining COVID-19 burden in 19 European countries by estimating the proportion of each countrys population that has acquired immunity to severe disease through infection or vaccination. Our results suggest that many European countries could still face a substantial burden of hospitalisations and deaths, particularly those with lower vaccination coverage, less historical transmission, and/or older populations. Continued non-pharmaceutical interventions and efforts to achieve high vaccination coverage are required in these countries to limit severe COVID-19 outcomes.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21251264

ABSTRACT

A key public health question during any disease outbreak when limited vaccine is available is who should be prioritized for early vaccination. Most vaccine prioritization analyses only consider variation in risk of infection and death by a single risk factor, such as age. We provide a more granular approach with stratification by demographics, risk factors, and location. We use this approach to compare the impact of different COVID-19 vaccine prioritization strategies on COVID-19 cases, deaths and disability-adjusted life years (DALYs) over the first 6 months of vaccine rollout, using California as a case example. We estimate the proportion of cases, deaths and DALYs averted relative to no vaccination for strategies prioritizing vaccination by a single risk factor and by multiple risk factors (e.g. age, location). We find that age-based targeting averts the most deaths (62% for 5 million individuals vaccinated) and DALYs (38%) of strategies targeting by a single risk factor and targeting essential workers averts the least deaths (31%) and DALYs (24%) over the first 6 months of rollout. However, targeting by two or more risk factors simultaneously averts up to 40% more DALYs. Our findings highlight the potential value of multiple-risk-factor targeting of vaccination against COVID-19 and other infectious diseases.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20246132

ABSTRACT

BackgroundAirline travel has been significantly reduced during the COVID-19 pandemic due to concern for individual risk of SARS-CoV-2 infection and population-level transmission risk from importation. Routine viral testing strategies for COVID-19 may facilitate safe airline travel through reduction of individual and/or population-level risk, although the effectiveness and optimal design of these "test-and-travel" strategies remain unclear. MethodsWe developed a microsimulation of SARS-CoV-2 transmission in a cohort of airline travelers to evaluate the effectiveness of various testing strategies to reduce individual risk of infection and population-level risk of transmission. We evaluated five testing strategies in asymptomatic passengers: i) anterior nasal polymerase chain reaction (PCR) within 3 days of departure; ii) PCR within 3 days of departure and PCR 5 days after arrival; iii) rapid antigen test on the day of travel (assuming 90% of the sensitivity of PCR during active infection); iv) rapid antigen test on the day of travel and PCR 5 days after arrival; and v) PCR within 3 days of arrival alone. The travel period was defined as three days prior to the day of travel and two weeks following the day of travel, and we assumed passengers followed guidance on mask wearing during this period. The primary study outcome was cumulative number of infectious days in the cohort over the travel period (population-level transmission risk); the secondary outcome was the proportion of infectious persons detected on the day of travel (individual-level risk of infection). Sensitivity analyses were conducted. FindingsAssuming a community SARS-CoV-2 incidence of 50 daily infections, we estimated that in a cohort of 100,000 airline travelers followed over the travel period, there would be a total of 2,796 (95% UI: 2,031, 4,336) infectious days with 229 (95% UI: 170, 336) actively infectious passengers on the day of travel. The pre-travel PCR test (within 3 days prior to departure) reduced the number of infectious days by 35% (95% UI: 27, 42) and identified 88% (95% UI: 76, 94) of the actively infectious travelers on the day of flight; the addition of PCR 5 days after arrival reduced the number of infectious days by 79% (95% UI: 71, 84). The rapid antigen test on the day of travel reduced the number of infectious days by 32% (95% UI: 25, 39) and identified 87% (95% UI: 81, 92) of the actively infectious travelers; the addition of PCR 5 days after arrival reduced the number of infectious days by 70% (95% UI: 65, 75). The post-travel PCR test alone (within 3 days of landing) reduced the number of infectious days by 42% (95% UI: 31, 51). The ratio of true positives to false positives varied with the incidence of infection. The overall study conclusions were robust in sensitivity analysis. InterpretationRoutine asymptomatic testing for COVID-19 prior to travel can be an effective strategy to reduce individual risk of COVID-19 infection during travel, although post-travel testing with abbreviated quarantine is likely needed to reduce population-level transmission due to importation of infection when traveling from a high to low incidence setting.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20203166

ABSTRACT

BackgroundCOVID-19 outbreaks have occurred in homeless shelters across the US, highlighting an urgent need to identify the most effective infection control strategy to prevent future outbreaks. MethodsWe developed a microsimulation model of SARS-CoV-2 transmission in a homeless shelter and calibrated it to data from cross-sectional polymerase-chain-reaction (PCR) surveys conducted during COVID-19 outbreaks in five shelters in three US cities from March 28 to April 10, 2020. We estimated the probability of averting a COVID-19 outbreak when an exposed individual is introduced into a representative homeless shelter of 250 residents and 50 staff over 30 days under different infection control strategies, including daily symptom-based screening, twice-weekly PCR testing and universal mask wearing. ResultsThe proportion of PCR-positive residents and staff at the shelters with observed outbreaks ranged from 2.6% to 51.6%, which translated to basic reproduction number (R0) estimates of 2.9-6.2. The probability of averting an outbreak diminished with higher transmissibility (R0) within the simulated shelter and increasing incidence in the local community. With moderate community incidence (~30 confirmed cases/1,000,000 people/day), the estimated probabilities of averting an outbreak in a low-risk (R0=1.5), moderate-risk (R0=2.9), and high-risk (R0=6.2) shelter were, respectively: 0.35, 0.13 and 0.04 for daily symptom-based screening; 0.53, 0.20, and 0.09 for twice-weekly PCR testing; 0.62, 0.27 and 0.08 for universal masking; and 0.74, 0.42 and 0.19 for these strategies combined. ConclusionsIn high-risk homeless shelter environments and locations with high community incidence of COVID-19, even intensive infection control strategies (incorporating daily symptom-screening, frequent PCR testing and universal mask wearing) are unlikely to prevent outbreaks, suggesting a need for non-congregate housing arrangements for people experiencing homelessness. In lower-risk environments, combined interventions should be employed to reduce outbreak risk.

SELECTION OF CITATIONS
SEARCH DETAIL
...