Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Wildl Dis ; 60(2): 285-297, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38345465

ABSTRACT

Lead (Pb) is a toxic nonessential metal, known mainly for causing poisoning of humans and wild birds. However, little is known about Pb exposure and its associated health effects in wild mammals. We conducted a global systematic literature review to identify peer-reviewed studies published on Pb exposure in wild mammalian species and the health effects they identified. In total, 183 studies, conducted in 35 countries and published over 62 yr (1961-2022), were included in the review. Only 6% (11/183) of the studies were conducted in developing countries. Although 153 mammalian species were studied, most studies focused on species that are easy to access (i.e., hunted species and small mammals that are easy to trap). Therefore, carnivores and scavengers were less frequently studied than herbivores and omnivores. Despite all studies reporting Pb concentrations, only 45 (25%) studies investigated health effects and, of these 45 studies, only 28 (62%) found any health effect in 57 species. All health effects were negative and ranged from subclinical effects to fatality. Methodologies of Pb sampling and quantification and reporting of results varied widely across the studies, making both Pb concentrations and health effects difficult to compare and evaluate. Thus, there is a need for more research on Pb exposure and its health effects on wild mammals, especially as carnivores and scavengers could be used as sentinels for ecosystem health.


Subject(s)
Ecosystem , Lead , Humans , Animals , Lead/toxicity , Birds , Mammals , Animals, Wild
2.
Toxicol Appl Pharmacol ; 308: 20-31, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27521977

ABSTRACT

Chlorpyrifos (CPF) and CPF-oxon (CPO) are known to inhibit neurite outgrowth but little is known about their ability to induce neurite retraction in differentiating neuronal cells. The aims of this study were to determine the ability of these compounds to destabilize neurites and to identify the key molecular events involved. N2a cells were induced to differentiate for 20h before exposure to CPF or CPO for 2-8h. Fixed cell monolayers labeled with carboxyfluorescein succinimidyl ester or immunofluorescently stained with antibodies to tubulin (B512) or phosphorylated neurofilament heavy chain (Ta51) showed time- and concentration-dependent reductions in numbers and length of axon-like processes compared to the control, respectively, retraction of neurites being observed within 2h of exposure by live cell imaging. Neurofilament disruption was also observed in treated cells stained by indirect immunofluorescence with anti-phosphorylated neurofilament heavy chain (NFH) monoclonal antibody SMI34, while the microtubule network was unaffected. Western blotting analysis revealed transiently increased levels of reactivity of Ta51 after 2h exposure and reduced levels of reactivity of the same antibody following 8h treatment with both compounds, whereas reactivity with antibodies to anti-total NFH or anti-tubulin was not affected. The alteration in NFH phosphorylation at 2h exposure was associated with increased activation of extracellular signal-regulated protein kinase ERK 1/2. However, increased levels of phosphatase activity were observed following 8h exposure. These findings suggest for the first time that organophosphorothionate pesticide-induced neurite retraction in N2a cells is associated with transient increases in NFH phosphorylation and ERK1/2 activation.


Subject(s)
Chlorpyrifos/toxicity , Insecticides/toxicity , MAP Kinase Signaling System , Neurites/drug effects , Neurofilament Proteins/metabolism , Animals , Cell Differentiation , Cell Line, Tumor , Mice , Phosphorylation
3.
Article in English | MEDLINE | ID: mdl-16516515

ABSTRACT

The enzyme Na(+), K(+)-ATPase was investigated in the gills of selected hyper-regulating gammarid amphipods. Gill Na(+), K(+)-ATPase was characterised with respect to the main cation and co-factor concentrations for the freshwater amphipod Gammarus pulex. The optimum cation and co-factor concentrations for maximal gill Na(+), K(+)-ATPase activity in G. pulex were 100mM Na(+), 15mM K(+), 15mM Mg(2+) and 5mM ATP, at pH 7.2. The effects of salinity acclimation on gill Na(+), K(+)-ATPase activity and haemolymph sodium concentrations was investigated in selected gammarid amphipods from different salinity environments. Maximal enzyme activity occurred in all gammarids when acclimated to the most dilute media. This maximal activity coincided with the largest sodium gradient between the haemolymph and the external media. As the haemolymph/medium sodium gradient decreased, a concomitant reduction in gill Na(+), K(+)-ATPase activity occurred. This implicates the involvement of gill Na(+), K(+)-ATPase in the active uptake of sodium from dilute media in hyper-regulating gammarids.


Subject(s)
Acclimatization/physiology , Amphipoda/enzymology , Gills/enzymology , Sodium Chloride/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Enzyme Activation/drug effects , Enzyme Activation/physiology , Hemolymph/metabolism , Seawater/chemistry , Sodium/metabolism , Sodium Chloride/chemistry , Sodium-Potassium-Exchanging ATPase/drug effects , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...